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Preface

After five successful editions (Toulouse, 1996; Beijing, 1998; Zurich, 2000; Linz,
2002, Gainesville, Fl., 2004), the series of international workshops on Automated
Deduction in Geometry (ADG) has consolidated its fundamental role concerning
the scientific community working on the interaction between geometry and au-
tomated deduction. From August 31 to September 2, 2006, a new ADG meeting
took place at the Pontevedra (Galicia, Spain) campus of the University of Vigo,
as a satellite event of the International Congress of Mathematicians (Madrid,
August 22–30, 2006). We acknowledge the financial support for ADG 2006, pro-
vided by the University of Vigo and the Spanish Ministerio de Educación y
Ciencia under grant MTM2005-24580-E.

It was a fruitful meeting – made possible by the work of the Organizing
Committee (see next page) – for exchanging ideas and for the presentation of
original results and software novelties – 21 contributions in total – under the
scientific guidance of the Program Committee (listed on the next page). More-
over, it was a privilege to receive the lectures of our distinguished guest speak-
ers, Thomas Hales (U. Pittsburgh) and Martin Peternell (T.U. Wien), dealing
with the so-called Flyspeck project, i.e., the automatization of Hales’ solution to
Kepler’s conjecture, and with rational offset surfaces and related issues in CAGD,
respectively.

Shortly after the meeting, a call for papers – within the scope of ADG,
but with content not necessarily related to a presentation at ADG 2006 – was
launched. After a long and detailed process of peer review and revision, we –
the editors – have selected the 13 papers of this volume, as a testimony of the
current state of the art concerning automated deduction in geometry.

This volume includes a paper by X. Chen and D. Wang proposing a system
in the form of a textbook – an electronic geometry textbook, to be more precise
– for managing geometric knowledge dynamically, effectively, and interactively.
The contribution by T. Hales, in the context of the “Flyspeck” project, describes
an algorithm that decides whether a region in three dimensions, described by
quadratic constraints, is equidecomposable with a collection of primitive regions
and, when a decomposition exists, finds the volume of the given region. P. Janičić
and P. Quaresma present an application of automatic theorem proving in the
verification of constructions made with dynamic geometry software. The paper
by P. Lebmeir and J. Richter-Gebert proposes an algorithm for automated recog-
nition of computationally constructed curves and discusses several aspects of the
recognition problem. R. H. Lewis and E. Coutsias deal with polynomial systems,
flexibility of three-dimensional objects, computational chemistry, and computer
algebra. D. Lichtblau’s contribution on computational real enumerative geome-
try discusses the number and reality of the cylinders generically determined by
five points in R3. D. Michelucci and S. Foufou address the detection of depen-
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dences in geometric constraints solving, and propose to use the recently published
witness method. The paper by A. Montes and T. Recio merges two techniques
(automatic discovery and minimal canonical comprehensive Gröbner systems) to
discover missing hypotheses in generally false statements. J. Narboux describes
the mechanization of the proofs of the first eight chapters of the classic book
“Metamathematische Methoden in der Geometrie” by Schwabäuser, Szmielew
and Tarski. The paper by P. Pech deals with the problem, posed by Chou long
ago, of finding a natural geometry problem where hypotheses are not described
by a radical ideal, such as the existence of regular polygons (pentagons, hep-
tagons) of even dimension. E. Roanes–Maćıas and E. Roanes–Lozano present
a Maple package, on the interaction of computer algebra and dynamic geom-
etry, for investigating problems about configuration theorems in 3D geometry
and performing mechanical theorem proving and discovery. P. Todd presents an
interactive symbolic geometry package, “Geometry Expressions,” generating al-
gebraic formulas from geometry in an interactive style which is convenient not
only for high school students, but also for mechanical engineers, graphics pro-
grammers, architects, surveyors, machinists, and many more. Finally, the paper
by L. Yang and Z. Zeng, employing a method of distance geometry, achieves
the symbolic solution to the following problem: express the edge-lengths of a
tetrahedron in terms of its heights and widths.

We, the editors, would like to thank the efforts of so many anonymous referees
involved in the process of selection and improvement of the submitted papers.
We think that, as a consequence of their work, this collection of papers, although
necessarily incomplete, shows the lively variety of topics and methods and the
current applicability of ADG to different branches of mathematics and to other
sciences and technologies.

October 2007 Francisco Botana
Tomas Recio
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Towards an Electronic Geometry Textbook

Xiaoyu Chen1 and Dongming Wang1,2

1 LMIB – School of Science, Beihang University, Beijing 100083, China
2 Laboratoire d’Informatique de Paris 6, Université Pierre et Marie Curie – CNRS

104 avenue du Président Kennedy, F-75016 Paris, France

Abstract. This paper proposes a system in the form of a textbook
for managing geometric knowledge dynamically, effectively, and interac-
tively. Such a system, called an Electronic Geometry Textbook, can be
viewed or printed as a traditional textbook and run as dynamic software
on computer. The knowledge in the textbook is being formalized by using
standard formal languages and may be processed by software modules
developed for geometric computing and reasoning, diagram generation,
and visualization. The textbook can be generated automatically by orga-
nizing and presenting the textbook data according to some specifications.
The system allows the user to manipulate (query, modify, restructure,
etc.) the textbook with automated consistency checking. We present the
main ideas on the design of the electronic geometry textbook, explain
the features of the system, propose five phases of creating and managing
the geometric knowledge in the textbook, discuss the involved tasks and
some of the fundamental research problems in each phase, and report
our progress and experiments on a preliminary implementation of the
system.

1 Motivation and Introduction

Elementary geometry has been developed for more than 2000 years and an enor-
mous amount of geometric knowledge has been accumulated. It is now desirable
to digitalize, organize, and process various kinds of geometric knowledge includ-
ing concepts, objects, axioms, theorems, diagrams, texts, and computing and
reasoning mechanisms using advanced computer technology to make them more
easily accessible, manageable, and usable.

In recent decades, remarkable progress has been made on computer-aided ge-
ometric problem solving. Most of the theorems in elementary geometry can now
be proved or even rediscovered automatically on computer. Software systems
are available for generating algebraic and readable proofs and drawing dynamic
diagrams automatically. However, research in this direction is by no means ex-
hausted and there is an urgent need to exchange data among different dynamic
geometry software systems (such as Cinderella [5], GCLC [7], and GEOTHER [15])
and to integrate them together with other mathematical software like computer
algebra systems and automated theorem provers to extend their power and func-
tionality. Little work has been done on the management of geometric knowledge

F. Botana and T. Recio (Eds.): ADG 2006, LNAI 4869, pp. 1–23, 2007.
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2 X. Chen and D. Wang

and there is no standard geometric knowledge base that can be accessed and
used by different geometric software systems. Although GeoThms [13] integrates
GCLC with a repository of theorem statements, their proofs (generated automat-
ically), and the corresponding illustrations in a web interface, relations among
the geometric problems in the database have not been considered.

When speaking about managing knowledge, we may first think about text-
books where knowledge is represented systematically and hierarchically accord-
ing to certain logical structures, e.g., from the simplest to the most complicated
and from the basic to the advanced. Due to the well-organized structure of the
domain knowledge, textbooks play an important role in education and research
to store, manage, and impart knowledge for new learners. Therefore, constructing
dynamic, interactive, and machine-processable textbooks (instead of traditional
static textbooks) is an interesting project of research and development. The
Electronic Geometry Textbook (EGT) aims at providing such a tool by integrat-
ing elementary plane geometric knowledge and software modules into a single
computing environment to support geometry education, research, and applica-
tion. The idea of developing such an integrated software system in the form of
a textbook for systematical and efficient management of geometric knowledge
originates from the second author who has been working on automated geomet-
ric reasoning in the last two decades. The first author has been stimulated to
elaborate the idea and to carry out the actual implementation. The start of this
project has also been motivated considerably by the work of Zeilberger [17] and
his invited talk at ADG 2004.

The purpose of this paper is to propose a new style of knowledge management
and to present the design and preliminary implementation of a software system
in the form of a dynamic textbook for managing geometric knowledge interac-
tively: the system can be viewed or printed as a traditional textbook and can run
as dynamic software on computer. The knowledge in the textbook, being formal-
ized by using standard formal languages, can be processed by software modules
developed for geometric computing and reasoning, diagram generation, and vi-
sualization and can be enriched systematically by “self-learning”. The textbook
may be generated automatically by organizing and presenting the textbook data
according to the user’s specifications. The system allows the user to manipu-
late (search, modify, restructure, etc.) the textbook with automated consistency
checking (of its logical structure). We will present the main ideas on the design
of the electronic geometry textbook, explain the features of the system, propose
five phases of creating and managing the geometric knowledge in the textbook,
discuss the involved tasks and some of the fundamental research problems in
each phase, and report our progress and experiments on a preliminary imple-
mentation of the system. As the implementation is still at an early stage, our
emphasis here is placed mainly on the design methodology.

While plane Euclidean geometry is the target of our current investigation, the
basic principles and ideas discussed in this paper apply to any geometry or even
any subject of mathematics.
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2 Objective and Design Methodology

In this section, we provide a short review on the state of the art of mathematical
knowledge management, describe the main objective of our EGT project, and
discuss our methodology for the EGT database and system design.

2.1 Mathematical Knowledge Management

Currentlymathematical knowledge is archivedand storedmainly inprintedand/or
electronic documents, like books and articles. It is presented in a static way and
searching for items in such documents can be done only syntactically. The struc-
ture of the documents cannot be changed and the knowledge therein cannot be
processed by problem solvers, theorem provers, or symbolic calculators.

As Internet has become a major channel for information service, various ef-
forts have been devoted to making mathematical knowledge available on the
Internet and exchangeable among different software programs. Some markup
languages such as MathML [16] have been developed, making it possible to dis-
play and communicate mathematical formulas on the web. As an application of
XML, MathML benefits from the tools existing for XML file manipulation. Al-
though it does offer some semantics for symbols in mathematical formulas, the
set of symbols supported, when compared to those used by working mathemati-
cians, is very restricted. To ameliorate this situation, projects like OpenMath [4]
and OMDoc [8] have emerged. The OpenMath standard focuses on describing
the semantic meanings of mathematical objects instead of their appearance by
using content dictionaries, in which mathematical symbols are defined syntac-
tically and semantically and thus allowed to be exchanged between computer
programs. Content dictionaries can be stored in databases or published on the
world-wide web. OMDoc is an extension to the OpenMath standard by markup
for the structure and the theory level of mathematical documents, adding capa-
bilities of describing the mathematical context of the used OpenMath objects.
These languages make mathematical knowledge not only machine-readable but
also machine-understandable and provide a foundation for developing, commu-
nicating, and publishing mathematics on the web.

Mathematical software systems for symbolic and numeric computation, formal
reasoning, proof checking, algorithm verification, etc. need domain knowledge
to support relevant (automated) activities. Some systems, such as Mizar [14]
whose objective focuses on writing and checking formal mathematics written in
the Mizar language, provide mathematical knowledge bases (that contain a large
amount of domain knowledge in different mathematical theories) and facilities to
browse formal mathematical documents. Other systems like Theorema [12] pro-
vide environments for building mathematical knowledge bases in a systematical
way and such bases can be browsed, extended, and used for teaching, learn-
ing, and mathematical discovering. Although mathematical contents embedded
in such documents can be processed inside the systems, the documents lack the
characteristics of traditional textbooks: mathematical contents are not presented
in natural style, the structures of the mathematical documents are static and
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passive, the logical relations of knowledge are not considered as in traditional
textbooks, and no tool is provided to construct, manipulate, and present these
documents effectively.

There are few facilities for data exchange among the systems mentioned above
and it is very difficult to share, reuse, and interact on domain knowledge re-
sources. Repeated developments are waste of efforts, time, and energy. To in-
tegrate system resources, some mathematical knowledge engineering projects,
including MBase [9], HELM [3], the Formal Digital Library [2], and the NIST

Digital Library of Mathematical Functions [11], have emerged, aiming at build-
ing general mathematical knowledge bases for retrieving, representing, acquiring,
and reusing various kinds of mathematical domain knowledge on the web. As the
knowledge in the bases is represented at the sematic level, it is possible to make
the knowledge bases serve for different levels of need, e.g., automated theorem
proving, automated programming, and mathematical education. Some projects
make use of web-based semantic knowledge bases to develop mathematical in-
telligent education environments such as ActiveMath [1] which is designed for
students to proceed with e-learning. The courseware (textbook) is produced au-
tomatically by weighing the student’s preferences. Different preferences may lead
to different textbook configurations, but manipulating (such as reconstructing
or modifying) the textbook is not allowed.

EGT will synthesize the functionality of document creation and manipulation
together with automated processing of mathematical contents in the document.
Similar to ActiveMath, EGT is also based on a formalized knowledge base in
which mathematical contents can be easily converted to the internal representa-
tions of other application software. However, EGT is designed mainly as a tool
for human authors to construct their own textbooks with automated verifica-
tion of structural consistency. The process of producing the textbook is mostly
human-driven and manipulations on the textbook are allowed and may lead to
new, modified, or improved versions of the textbook.

2.2 Objective and System Description

As one of the most fundamental and oldest subjects of mathematics, geometry
is founded on graphical objects abstracted from the real visual world. Geometric
computation, reasoning, and visualization require the support and integration of
logical deduction mechanisms, effective algebraic methods, and graphical draw-
ing tools, involving both abstract quantities and intuitive figures. Moreover,
there is no other mathematical subject than geometry in which there are so
many highly interesting and fascinating theorems and such theorems may be
proved automatically on computer. In fact, automated deduction is much more
mature and successful in geometry than in any other domain of mathematics.
When mathematical knowledge is organized in a textbook, it is important to
track the logical clues of the knowledge, such as how a concept is introduced
and how a theorem is used in the proof of another theorem. The availability of
automated reasoning devices is a prerequisite for knowledge organization.
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Therefore, we consider geometry a unique and rich subject of mathematics
that should be chosen for study in the context of knowledge management. In
this study, the full power of computer for symbolic, numeric, and graphical com-
puting and data processing may be used and our idea and methodology may be
effectively tested.

The objective of our textbook project is to provide a tool for human authors
to construct dynamic, interactive textbooks (see Fig. 1).

Fig. 1. System Framework

– The formulation and representation of geometric knowledge and the struc-
ture of the textbook should be standardized, so that the knowledge, when
digitalized, can be processed with little extra effort by different software
modules existing or being developed for geometric computing and reason-
ing, interactive or automated dynamic diagram generation, and visualization
of geometric objects and the results produced by those modules can be easily
integrated into and displayed in the textbook.

– Under this standardization, a textbook database will be built, collecting text-
book data which refer to as formalized geometric knowledge and related con-
tents (such as literature information, background of remarkable theorems, and
explanation texts), and new knowledge may be incorporated properly and au-
tomatically into the textbook database by implementing a self-learning and
extracting mechanism. The purpose of building such a textbook database is
to provide a dataset for reusing and sharing textbook data and semantic in-
formation for various applications.

– The user will be able to edit his/her own textbook documents in an editing
language of “mixture” style.

– A dynamic textbook graphical user interface (GUI) can be created automat-
ically to display the textbook document by translating formalized geometric
statements into natural languages in traditional style automatically.
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– The user is permitted to manipulate (such as search, modify, and restructure)
the textbook or parts thereof and process the knowledge (such as proving
theorems, performing computations, and drawing diagrams) in a visual en-
vironment using available software modules.

– The system will verify some geometric statements by employing other avail-
able software modules and check some structural consistency of the con-
structed document in the sense of textbook.

2.3 Design Methodology

The creation and management of the textbook can be divided into the following
five phases.

Classification. Mathematical documents contain two kinds of contents, mathe-
matical expressions and ordinary texts, which are mixed and not separated
in commonly used document processing tools like LATEX. In our EGT sys-
tem, mathematical expressions and standard mathematical statements such
as “let . . . be . . . ”, “if . . . then . . . ”, and “. . . if and only if . . . ” are formal-
ized (with internal formal representations and thus may be processed by
other software modules and manipulated by the user). Ordinary (explana-
tion) texts are clearly identified. We standardize the structure of textbooks
by classifying textbook contents with hierarchy and provide the user with
standard templates for uploading the contents. The classification of geomet-
ric objects, concepts, and knowledge “segments” is also a prerequisite for the
formalization of geometric knowledge. We shall discuss the classification of
textbook contents and geometric knowledge in Section 3.1.

Organization. After textbook contents are classified into parts, our problem is
to assemble the chosen “parts” in a reasonable “order” for a concrete text-
book. Although our EGT system is human-driven (i.e., how to organize the
textbook is decided by the user), the system is capable of verifying the suit-
ability and consistency of the logical structure of the textbook according to
some characteristic rules on the structure of standard textbooks and provid-
ing the user with suggestions when such rules are violated. The reader will
find more details in Section 3.2.

Representation. The above two phases are mainly concerned about the macro-
structural aspects of the textbook. As for the contents of each “template”,
two types of information need be provided: the information for displaying
the contents in natural style and the underlying formal representation for
interacting with other modules. How to define the two types of information,
in particular the semantic formal representation of knowledge and the infor-
mation needed for various applications? Several data definition models will
be described in Section 3.3.

Manipulation. Based on the classification and representation, a language for
editing textbook documents has to be developed. How to present formal
data in natural style and how a user interacts with the GUI? We propose a
kind of language in a mixture style to edit textbook documents with possible
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operations on the GUI and a “pattern-substitution method” for translating
formal statements into natural languages for display (see Section 4.1).

Computation/deduction. To make the system dynamic, its interaction with
other software modules is necessary. The main question is how to convert
the formal statements of EGT into the internal representations used in other
application software. The conversion need be based on semantic information,
i.e., the formal definitions of the concepts used in the statements. We shall
use an example to illustrate the idea of how to ease the process of conversion
in Section 4.2.

In the following two sections, we will explain these phases in more detail.

3 Textbook Database Creation

3.1 Classification

To standardize the structure of textbooks, we need some terminology. By a
segment we mean a minimal unit of knowledge in the database or a textbook. A
segment cannot be broken during data and knowledge processing. One knowledge
segment may be surrounded by other knowledge segments. We use block to
represent the aggregation of these interrelated segments. Figure 2 shows how
a traditional textbook can be created by structuring its contents into segments,
blocks, sections, and chapters.

In order to construct, manipulate, and manage segments uniformly, we need
to classify them into different classes, which abstract the sets of segments with
common properties. A template represents the definition of a class which stan-
dardizes the needed data. Every segment in the class can be considered as an
instance in the sense of programming and can be constructed according to the
corresponding template.

For example, the segments in a textbook may be divided into two families of
classes: specification classes and knowledge classes. Specification classes include

– Note: describing the background or explaining the meanings of certain
knowledge;

– Example: illustrating certain knowledge;
– Exercise: providing problems related to certain knowledge;
– Graph: visualizing certain knowledge;
– Proof or Calculation: demonstrating theorems, lemmas, formulas, etc.

Knowledge classes cover all the knowledge segments and include Definition
class, Axiom class, Lemma class, Theorem class, Corollary class, Property class,
and Formula class. For instance, the definition of a triangle may be considered
as an object of the Definition class at the level of knowledge segment.

Furthermore, in order to formalize knowledge, we need finer classifications,
e.g., to specify logical relations among knowledge statements, at the semantic
level. We use statements to represent the contents in each segment.
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Fig. 2. Structuring the Textbook

A definition defines a new concept using already defined ones. Other knowl-
edge statements are made up of concepts. Some statements like theorems and
formulas are used to describe properties about and logical relations (such as “im-
plication” and “equivalence”) among concepts. We use Concept class to abstract
all the concepts. Geometric concepts may be classified, for instance, into four
types

– geometric objects : point, line, triangle, orthocenter of a triangle, circle, etc.
– object relations : parallelism, intersection, similarity, etc.
– geometric quantities : length of a segment, area of a circle, ratio of two seg-

ments, etc.
– quantity relations : equal to, less than, larger than, etc.
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Every concept has a formal definition. According to the statements of defini-
tions, geometric concepts may be divided into two kinds:

– basic concepts (including basic geometric objects like point and line, object
relations like parallelism, geometric quantities like the length of a segment,
and quantity relations like equal to), whose definitions are stated by means
of natural language or diagrams, and

– derived concepts (such as the circumcenter of a triangle and the orthic trian-
gle of a triangle), whose definitions can be formalized by using basic concepts.

For example, we may consider point, segment, ray, line, angle, triangle, and
circle as basic concepts in plane Euclidean geometry. Then many other geometric
concepts (such as the circumcenter and the median of a triangle and the diameter
of a circle) may be considered as derived from these basic concepts. The clas-
sification of geometric concepts is essential for the formalization of geometric
knowledge (see Section 3.3).

3.2 Organization

The organization phase consists in digging out the logical relations among dif-
ferent knowledge segments in standard textbooks in order to provide rules to
assist and guide the author to decide the structure of his/her textbook in the
process of textbook creation. For each textbook, the author has to find a linear
order for its knowledge segments (contents) such that their logical relations are
satisfied. The segments are then arrayed one by one from the beginning to the
end of the textbook for display according to this order.

To write a textbook, one has many necessary rules for organizing the textbook
data. A human writer may first decide what knowledge to be included in the
textbook, then decide the global chapter-section structure to group the knowl-
edge segments, and finally decide the local structure, so that all necessary rules
are obeyed. Although one can make his/her own decision as what knowledge to
be chosen and how to organize the knowledge, there are some common prac-
tice and implicit convention in the scientific community as how mathematical
knowledge should be formulated and presented. In order to assist the user to
check careless errors in the textbook automatically, the system has to prevent
the user from constructing unsound textbooks. For instance, the textbook may
be constructed only by using the provided templates and its structure should
satisfy some general rules. One general rule for organizing knowledge segments
is that the definition segment for every concept in a geometric statement (such
as knowledge statement, exercise statement, or example statement) should have
been given before this statement. For instance, the definition of altitude should
be arranged before the definition of orthocenter, and so should the definition
of equilateral triangle before Steiner’s theorem. There are many other rules: for
example, the fact that the three altitudes of a triangle are concurrent should be
given before the definition of orthocenter, and the facts used in the proof of a
theorem should appear before this theorem. Of course, the user is permitted to
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introduce his/her own favorite rules, which have priority over the general rules,
for arranging the segments.

Based on these rules, the system can verify the structure of the textbook
automatically.

3.3 Representation

We need to provide suitable data representation models for segments and blocks
and a standard language for the formalization and representation of knowledge,
so that (formalized) knowledge can be translated into natural languages and
processed by other software modules.

Knowledge Representation. Geometric statements for concepts, definitions,
axioms, theorems, lemmas, corollaries, formulas, properties, etc. are the main
contents of geometric knowledge. Predicate logic, a convenient language for the
formalization of mathematics, is a natural candidate for the formalization of
geometric statements. We use a kind of first-order logic with equality as the
representation language. As mentioned before, geometric statements are con-
structed on the basis of concepts, so formalizing geometric concepts is one of the
main tasks.

Taking compound situations of geometric statements into consideration, we
assign a relevant type to each concept according to their classification discussed in
Section 3.1. For instance, the type of orthocenter is Point and the type of altitude
is Segment. The concepts of geometric objects in plane Euclidean geometry have
seven types: Point, Segment, Ray, Line, Angle, Triangle, and Circle. Geometric
quantities may have four types: Length (e.g., the distance between two points),
Degree (e.g., the size of an angle), Number (e.g., the slope of a line), and Area
(e.g., the area of a triangle). All these concepts can be considered as functions
because they are actually nominal and can be used as arguments or terms. The
concepts of object relations and quantity relations have only one type Boolean
and can be considered as atomic formulas because they are used to declare or
decide the truth values of statements.

For each geometric object or quantity, we use its natural name as its function
symbol and other geometric objects of certain type related to the object or
quantity as its function arguments. For example, triangle [A, B, C] represents a
triangle with points A, B, C as its vertexes; circle [A, B, C] represents a circle
passing through points A, B, C; area [circle [A, B, C]] represents the area of circle
[A, B, C]; ratio [length [segment [A, B]], length [segment [B, C]]] represents the
ratio of the length of segment [A, B] to the length of segment [B, C]. Here as
convention, capital letters are used to represent points, so the function “point”
may be omitted by default. Those symbols without function names may be
considered as variables.

For each object or quantity relation, we use the short form of its natural name
as its predicate symbol ; its predicate terms are the formalized concepts described
by the relation. For example, pon [P, line [B, C]] declares that point P is on line
[B, C].
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In this way, we can give a formalized expression for each concept:

return Type Function/Predicate symbol [Type arg1, Type arg2, ...]

which looks like the definition of a function expression in programming language.
For example, “Point intersection [Line a, Line b]” represents the intersection of
line a and line b, with return type Point.

We can construct compound statements by composing “function expressions”
of this kind, provided that the type constraints are satisfied. For example, “per-
Line [intersection [line [A, B], line[C, D]], line [E, F]]” means the perpendicular
line from the intersection of line AB and line CD to line EF.

There are many statements (e.g., three altitudes of a triangle) in which we
speak about several concepts together. We use a new type Set to indicate this sit-
uation with an affiliated piece of information: the number of elements in the set.
Therefore, “altitudes [triangle [A, B, C]]” means the three altitudes of triangle
ABC and it returns the set and the number (i.e., 3) of segments. Furthermore,
“Be[{segment [A, D], segment [B, E], segment [C, F]}, altitudes [triangle [A, B,
C]]]” means that AD, BE, CF are the three altitudes of triangle ABC.

In this way, one can formalize every atomic formula in a geometric statement.
Formalized geometric statements can be fully constructed by connecting atomic
formulas with connectives such as “,”, “∧” (and), and “⇒” (imply). To make this
formal language natural and expressive, the user is permitted to use standard
symbols such as “∗” (multiplication), “+” (addition), and “=” (equality) to
represent algebraic operations.

Remark: The formalism described above is called a human-oriented language
because statements in this formalism can be translated without much effort into
different natural languages (see Section 4.1) used in traditional textbooks. How-
ever, it may be somewhat difficult for other software modules such as theorem
provers and diagram drawers to process statements in this human-oriented lan-
guage because they may not “recognize” so many concepts used therein. To make
the conversion easier for communication, it is necessary to provide a machine-
oriented language as “intermediary” to re-represent geometric statements. Such
a language is also in first-order logic and may use only a subset of the concepts
(e.g., function and predicate symbols) that are used in the human-oriented lan-
guage and both of them express the same statements semantically. The machine-
oriented representation may be more verbose, but the semantic meanings of the
statements may become clearer for other applications. It seems that using the
human-oriented language to express the statements which are also needed to be
translated into natural languages for display is cumbersome and storing state-
ments in natural languages directly for display is more convenient. However,
the purpose of introducing the human-oriented language is to make it possible
to automatically “interpret” the meanings of the statements newly created into
machine-oriented statements and “translate” them into natural languages when
the database is extended (see Section 4.2 for more details).

Data Representation Model. Data representation models refer to various
templates that are used to define the contents of classes mentioned in Section 3.1.
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Segments and blocks are constructed according to such models. In what follows
we provide specifications for some of the models.

Concept {
– Name (key words): function symbol or predicate symbol.
– Argument/Term list: (Type arg1, Type arg2, . . . ) (not nec-

essarily one because, e.g., a circle may be represented by
three points or one point and its radius).

– Argument constraint: sometimes only the constraints for
the types of arguments may be not enough. For instance,
when median [X, triangle[A, B, C]] is used to express the
median through X, X should be one of the vertexes of triangle
ABC.

– Return type: type of the defined concept.
– Pattern: define patterns for translating the formalized con-

cept into natural languages like English and Chinese.
– Algebraic expression: coordinates, equations, or inequa-

tions.
– Hidden information: when using triangle [A, B, C] in a

geometric knowledge statement, we have additional informa-
tion such as point A, B, C are the vertexes and the opposite
side of A is side BC. Information of this kind should be gen-
erated automatically during knowledge processing.

– Nondegeneracy condition: provide nondegeneracy condi-
tions for the concept (e.g., the vertexes of a triangle are not
collinear).

}

Definition Block {
– Name (key words): name of the defined concept.
– Human-oriented expression: formalized definition state-

ment in human-oriented language.
– Machine-oriented expression: formalized definition state-

ment in machine-oriented language.
– Consistency condition: provide geometric constraints for

the defined concept. For instance, when the orthocenter of
a triangle is used, the fact that the three altitudes of the
triangle are concurrent should have been given. This serves
to collect relations among different segments of knowledge.

– Note Segment: give some background notes or explanations
on the definition.

– Graph Segment: visualize the defined concept.
– Example Segment: give examples illustrating the definition.
– Exercise Segment: give exercises related to the definition.

}
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Axiom Block: containing Name (key words), Human-oriented expression,
Machine-oriented expression, Note Segment, Graph Segment, Example
Segment, Exercise Segment.

Theorem/Lemma/Corally/Formula/Property Block: containing Name,
Human-oriented expression, Machine-oriented expression, Note Segment,
Graph Segment, Example Segment, Exercise Segment, Proof/
Computation Segment.

Note Segment: containing Text, Formalized expression, Link (to litera-
ture, graphs, used knowledge in the textbook, etc. to describe the back-
ground or explain certain knowledge).

Example Segment: containing Human-oriented expression, Machine-ori-
ented expression, Graph Segment, Proof/Computaion Segment.

Exercise Segment: containing Type of the question (proving, computing,
drawing, etc.), Human-oriented expression, Machine-oriented expression,
Graph Segment, Solution (Proof/Computation) Segment.

Graph Segment: giving an image or a frame for displaying (dynamic)
graphs (where other diagram drawers may be used).

Proof/Computation Segment: giving the process of proving/computing
(where other software modules may be used).

Remark: The aim of building a textbook database that collects predefined
segments and blocks is to help the user write or create his/her own textbook
documents and to keep the collected data reusable. Although the database may
provide a lot of formalized knowledge that can be used and processed by other
software modules, the data are only formal representations of knowledge state-
ments and do not serve as inference rules as in a deduction system. In other
words, the textbook system itself is not a deduction system. Various kinds of
operations on the textbook database such as browsing the database, searching
for items, modifying the data, and adding new data should be provided. Mean-
while, semantical verification (such as checking for the grammar of formalized
expressions, correctness, redundancy, and completeness) during these operations
should be performed (see Section 5.1).

4 Textbook Data Processing

4.1 Manipulation

Based on the textbook database, the user can create and edit his/her own text-
book documents. The created documents are similar to LATEX documents in
format, but our EGT system will create a dynamic and interactive GUI (instead
of static dvi files generated by LATEX) to display the textbook from the source
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document. The user may manipulate the textbook through the interface visually
and print out the textbook at any time.

Editing Language. It is expected that the editing language for the textbook
document will combine several languages into a new format that presents two
aspects of the document — structure and content — and that is usable in other
applications.

Structure markups: Declare the construction of segments, blocks, sections, or
chapters.

Content definition: Use a data definition language to create the contents of the
declared segments or blocks according to the data representation models in
Section 3.3.

Query language: As the textbook database collects predefined segments, a query
language should be used to fetch the needed segments from the textbook
database.

Communicating commands: When some geometric knowledge in the textbook is
processed by other software modules, the produced results (such as graphs or
proofs of theorems) should be retrieved and integrated into the corresponding
blocks. This is handled by using specific commands (such as draw or prove)
to communicate with the external software modules.

Interactive Manipulations. The textbook GUI (that displays the processed
results in traditional style) is generated by executing relevant query and com-
municating commands, translating formalized expressions into natural language,
and presenting the final data in a configured view. The index of the textbook
may be extracted from the document automatically. The following three kinds
of operations on the textbook need be considered.

Modifying the contents of the textbook. The contents of the textbook document
come mainly from two sources: the textbook database and data newly created
by the user. The user may use the data from the database when creating
his/her textbook document, but the available data may be insufficient and
some of them may be inadequate for his/her purposes. He/she may need to
modify the contents of the textbook (such as change the translating style
of formalized concepts, modify some texts, and add formalized propositions,
examples, and/or exercises) according to his/her interest and need.

Restructuring the textbook. As mentioned before, the textbook data are cre-
ated by constructing separated segments and blocks. The textbook may be
restructured by moving segments or blocks from one place to another.

Setting the style (such as font size, color, and position) of segments.

Translator. Formalized geometric statements of definitions and theorems, etc.
may be translated by a translator into natural languages presented in natural
style. The translator works at two levels: first translate formalized atomic for-
mulas and then construct geometric statements in a human-readable style by
connecting them with connectives and punctuation marks. The atomic formulas
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are constructed by composing formalized concepts, so the basis is to translate
all the concepts. We introduce a pattern for each concept and store it in the
representation model. For example, the pattern of “perpendicular [arg1, arg2]”
is “arg1 is perpendicular to arg2”. This is represented by:

perpendicular[arg1, arg 2]−−−−−−−−−−−−−−−−−−−−→
arg 1 is perpendicular to arg 2

Given a concrete atomic formula like line [A, B], the pattern-substitution
process can be seen as:

line [A, B]−−−−−−−−−→
line arg 1 arg 2

line AB

For compound concepts, translation is performed in a recursive way until the
formulas are variables. For example, to shorten the formulas, let

� := triangle [A, B, C],
α := sides [�],
β := perLine [O, α],
γ := foot [β, α].

Then translation of the formula Collinear [γ] proceeds as follows:

Collinear [γ]−−−−−−−−−−−−→
arg1 are collinear

γ are collinear

foot [β, α]−−−−−−−−−−−−−−−→
the foot/feet of arg1

the feet of β

perLine [O, α]−−−−−−−−−−−−−−−−−−−−−−−−−−→
the perpendiculars from arg1 to arg2

the perpendiculars from O to α

sides [�]−−−−−−−−−−−−−−−−→
the three sides of arg1

the three sides of �

triangle [A, B, C]−−−−−−−−−−−−−−−→
triangle arg1arg2arg3

triangle ABC

As A, B, and C are variables, we arrive at the complete statement: the feet of
the perpendiculars from O to the three sides of triangle ABC are collinear.

For different natural languages (e.g., Chinese, English, and French), different
patterns should be provided. Moreover, each chosen pattern should be adjusted
according to the type of the arguments. Consider, for example, “foot [arg1,
arg2]”. If the type of the arguments is Set, then the pattern should be “the feet
of arg1”; otherwise, the pattern should be “the foot of arg1”.

After all the atomic formulas in a formalized geometric statement have been
translated, the whole sentence can be constructed by adding appropriate connec-
tives or punctuation marks. For example, the formalized statement of Simson’s
theorem is

Collinear [γ] ⇐⇒ pon [O, circumcircle [�]].
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By translating the involved atomic formulas and inserting appropriate connec-
tives, we can construct the whole statement in English as follows: The feet of the
perpendiculars from O to the three sides of triangle ABC are collinear if and only
if O is on the circumcircle of triangle ABC. There may be other connectives like
“if . . . then . . . ” in a theorem and “. . . is called . . . ” in a definition. Connectives
are chosen appropriately according to the structures of the atomic formulas.

The use of patterns makes it possible to translate any given formalized geo-
metric statement within the system and to extend the database easily by adding
new concepts and relevant patterns. The textbook can even be considered as a
“self-translating” system.

4.2 Computation and Deduction

Computation and deduction may be considered as special operations on the
knowledge in the textbook. Communication between the textbook and other
available geometry software packages such as theorem provers and diagram gen-
erators to process the knowledge represented in our formal language is necessary.
It is expected that eventually all the lemmas, propositions, and theorems stated
in the textbook can be automatically proved, all the geometric quantities in-
troduced in the textbook can be computed, and all the operations defined in
the textbook can be performed in real time with simple mouse clicks. The main
task is the conversion between the formalized knowledge in our textbook and
the input/output formats of the chosen software packages (such as Gool [10]).

Considering that most dynamic geometry systems and reasoning methods
use only a subset (basic concepts) of geometric concepts that are used in stan-
dard textbooks, we propose a machine-oriented language as “intermediary” (see
Fig. 3). Knowledge statements created in the human-oriented language can be
automatically interpreted into the machine-oriented language; the latter can then
be translated more easily into the formats used in other software modules.

Fig. 3. Translation Steps

Like translation into natural languages by patterns, we use the formal def-
initions of concepts within the system to eliminate “redundant” concepts in
geometric statements through rewriting techniques. This allows human-oriented
geometric statements to be “interpreted” into machine-oriented ones. In this
sense, the textbook can be considered as a “self-interpreting” system.

For instance, we can “interpret” the hypothesis “Collinear [γ]” of Simson’s the-
orem as follows, where γ is defined as above. First, eliminate the concepts of type
Set in the formula.Using “sides [�] := {segment [A, B], segment [B, C], segment[A,
C]}”, we obtain a formula “Collinear [foot [perLine [O, segment [A, B]], segment
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[A, B]], foot [perLine [O, segment [B, C]], segment [B, C]], foot [perLine [O, seg-
ment [A, C]], segment [A, C]]]”. Next, eliminate the derived concepts “foot” and
“perLine” using basic concepts and new variables of points. As an example, we
deal with “foot [perLine [O, segment [A, B]], segment [A, B]]”. Introduce a new
variable point E. Then we have the following sequence of interpretations:

E = foot [perLine [O, segment [A, B]], segment [A, B]]
� the definition of "foot"

E = intersection [perLine [O, segment [A, B]], segment [A, B]]
� the definition of "intersection"

pon [E, perLine [O, segment [A, B]]] ∧ pon [E, segment [A, B]]
� introduce � = perLine [O, segment [A, B]]

pon [E, �] ∧ pon [E, segment [A, B]]
� the definition of "perLine"

pon [E, �] ∧ pon [O, �] ∧ perpendicular [�, segment [A, B]] ∧ pon [E,
segment [A, B]]
� the definition of "line"

� = line [E, O] ∧ perpendicular [�, segment [A, B] ∧ pon [E, segment [A,
B]]
� eliminate "�"

perpendicular [line [E, O], segment [A, B]] ∧ pon [E, segment [A, B]]

Therefore, we can obtain a set of formulas without “derived concepts”, which
can be more easily translated into other formats for application.

5 Implementaional Issues and Prototyping

We choose Geometry Revisited [6] as the model of our electronic textbook and
Java as the programming language. The object-oriented feature of Java enables
the relation between “class” and “object” to be described effectively in the text-
book. Java also provides rich primitives for graphical interface implementation.
We have implemented a preliminary prototype of the textbook system. The de-
velopment of the system consists of two main tasks explained below.

5.1 Textbook Database Construction

Data Module. The textbook database collects predefined segments for text-
book construction. These segments are considered and constructed as objects of
the corresponding classes, such as Definition class, Axiom class, Lemma class,
Theorem class, Corollary class, Property class, Formula class, Note class, Exam-
ple class, Exercise class, Graph class, and Proof/Calculation class. The definition
of these classes, i.e., the templates for constructing segments, need be provided
at first. The contents of Definition Class and Theorem Class may be specified as
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Fig. 4. Templates of Definition and Theorem Segment

in Fig. 4. We have constructed 48 definition segments and 17 theorem segments
inside the system according to these “templates.”

Managing these segments for easy browsing, searching, retrieving, and pro-
cessing is another issue. In the current prototype, the predefined segments are
organized and stored under Java Set Framework. Each segment is assigned a
unique key: the defined concept name of a definition or the well-known name of
a theorem is used as the key of reference to the corresponding segment. For such
theorems that do not have any well-known names, unique keys are also created
and assigned for reference inside the system.

Operation Module. Based on the keys assigned to segments, searching a target
segment such as the definition of orthocenter or the theorem of Simson by its
well-known name can be easily implemented. However, in most situations, the
name of the target segment is not clear, and thus searching at the semantic level
is important and necessary. For example, we know the statement of a definition
but not its name (as some theorems even have no well-known names) and we may
wish to find theorems whose hypotheses or conclusions are the same semantically,
but stated in different ways. With this kind of searching service, the user may
obtain real-time guide to extract the needed segments from the database or find
the needed data while editing the textbook documents. The questions of how
to define this kind of query language and how to execute the search remain for
further investigation.

Moreover, interactive operations on the database such as modifying the con-
tents of segments and constructing and adding new segments into the database
(with dialogues) need be provided for the user to easily maintain the database.
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These operations have not yet been implemented, but are on the top of our stack
of programming tasks.

Verification Module. Since the segments stored in the database contain “geo-
metric meanings” semantically, verification should be performed when modifica-
tions on the database are operated. For example, the following properties should
be checked.

Grammar: when geometric statements are formalized, the construction of for-
malized expressions need obey some rules (e.g., the type constraints). The
constructed expressions can be processed if and only if they are grammati-
cally correct.

Correctness: check the correctness of geometric propositions and the possibil-
ity of declaring a geometric statement. This may work by employing other
software modules such as theorem provers or geometric constraint verifiers.

Redundancy: check the redundancy of the database when new data are added.
For example, knowledge segments already existing in the database should
not be added again.

Completeness: check whether all the segments that derive the newly added
segments already exist in the database. This ensures the completeness of the
database.

A proposed working frame of these three modules is depicted in Fig. 5. When
a modification on the Data Module is generated from the Operation Module,
the Verification Module will check whether it is permitted. If the modification is
verified successfully, it will be performed. Otherwise, Warning message will be
produced, explaining the cause to the user.

Fig. 5. Textbook Database Frame

5.2 Document Creation and Textbook Manipulation

To create the textbook by using, organizing, and processing the data from
the database, we need to implement various functions. Such functions may be
grouped into several modules.



20 X. Chen and D. Wang

Fig. 6. Document Creation and Textbook Manipulation

Fig. 7. Textbook GUI

The frame of these modules that we propose is shown in Fig. 6. The user cre-
ates his/her textbook document in Textbook Document Editor environment by
using the Editing language discussed in Section 4.1. The document will be inter-
preted by the Interpreter. If no error occurs, the interpreted information will be
transported into the Processor, which will perform operations such as translating
the formalized statements into natural languages, querying the needed segments
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Fig. 8. Try to Move the Ceva Theorem Before the Definition of Cevin

for use, and communicating with other software modules to prove a theorem or
generate a diagram. The Textbook GUI will then be created to present or display
all the contents produced by the Processor. Interactive manipulations such as
modifying the contents of segments, proving a theorem, generating a diagram,
and reorganizing the structure of the textbook will be checked by the Verifier.
If the verification is passed successfully, the manipulation will be performed on
the GUI and feedback about the modified information will be transported to the
textbook document. Otherwise, a Warning message will be generated and the
manipulation will be denied. Furthermore, the textbook may be printed out as
a Traditional Textbook at any time.

We have implemented a translator for translating formalized statements into
English and Chinese, a GUI for displaying constructed segments in natural lan-
guages (see Fig. 7), and some functions for manipulating and restructuring
knowledge segments. The operability of restructuring can be verified accord-
ing to the rules proposed in Section 3.2 (see Fig. 8: if some rules are disobeyed,
then the incompatible segments will be highlighted; if all the rules are obeyed,
then the label for each segment will be adjusted automatically).

6 Conclusion and Future Work

In this paper, we have presented the design of a dynamic interactive (geometry)
software system that integrates available recourses into a uniform environment —
textbook — and that realizes textbook data standardization, share and reuse.
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The user can edit his/her own textbook documents, making use of the textbook
database, and manipulate them visually and interactively. The built-in geometric
knowledge can be processed by different software modules and be presented in
natural style for viewing and printing. The system may be used for education,
research, and technical document writing and processing.

The design and implementation of algorithms and functions for the tasks dis-
cussed above and the construction of the GUI that integrates different interactive
functions require an enormous amount of work and effort. Currently we are still
at the early stage of building the system. Based on the implemented prototype,
we will provide the definitions of other classes, construct more segments into the
textbook database, and make experiments to find efficient techniques for query-
ing at the semantic level. We will also implement functions for interaction with
other software modules. The implementation of other operations on the database
and GUI as well as verification functions and the design of the document editor
and interpreter will be carried out at a later stage.
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Methods for offering them the opportunity to participate in the special semester.
This work has benefited considerably from the authors’ communications with
Bruno and other members of the Theorema group during their stay in Linz. The
authors also wish to thank the referees for their insightful comments and sugges-
tions which have helped bring this paper to the present form. This work is finan-
cially supported by the National Key Basic Research Projects 2004CB318000
and 2005CB321902 of China.

References

1. ActiveMath Home, http://www.activemath.org/
2. Allen, S., Bickford, M., Constable, R., Eaton, R., Kreitz, C., Lorigo, L.: FDL: A

Prototype Formal Digital Library. Cornell University, USA (2002), Available at
http://www.nuprl.org/documents/FDL/02cucs-fdl.pdf

3. Asperti, A., Padovani, L., Coen, C.S., Schena, I.: HELM and the Semantic Math-
Web. In: Boulton, R.J., Jackson, P.B. (eds.) TPHOLs 2001. LNCS, vol. 2152, pp.
58–74. Springer, Heidelberg (2001)

4. Caprotti, O., Carlisle, D.: OpenMath and MathML: Semantic Mark Up for
Mathematics. ACM, New York (1999), ACM Crossroads, http://www.acm.org/
crossroads/xrds6-2/openmath.html

5. Cinderella Home, http://www.cinderella.de/
6. Coxeter, H.S.M., Greitzer, S.L.: Geometry Revisited. The Mathematical Associa-

tion of America, Washington, DC (1967)
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Abstract. This article describes an algorithm that decides whether a region in
three dimensions, described by quadratic constraints, is equidecomposable with
a collection of primitive regions. When a decomposition exists, the algorithm
finds the volume of the given region. Applications to the ‘Flyspeck’ project are
discussed.

1 Introduction

From ancient times, a common approach to computing the volume of a region A is to
dissect A into finitely many pieces and then reassemble those pieces into finitely many
new regions whose volumes have been previously determined.

This is the motivating idea behind Hilbert’s third problem on polyhedra. He asked if
any two polyhedra of the same volume are equidecomposable. That is, can one poly-
hedron be cut into finitely many polyhedral pieces, which can be reassembled into the
other polyhedron. M. Dehn answered this question negatively in 1902. For example, a
regular tetrahedron is not equidecomposable with a cube of the same volume. The proof
of this result is that the cube and the tetrahedron have different Dehn invariants, but all
equidecomposable polyhedra have the same Dehn invariant.

In two dimensions, the corresponding result is true: any two polygons of the same
area are equidecomposable. That is, if they have the same area, the first polygon can
be cut into finitely many triangles in such a way that they can be reassembled into the
second polygon.

The mathematical literature on equidecomposability has various extensions. The
Banach-Tarski paradox is one of the best known of these results: it is possible to cut
a ball into finitely many (non-measurable) pieces and reassemble them into a two balls
of the same radius as the first. Another is the classical squaring-the-circle problem: M.
Laczkovich proved that it is possible to cut a square into finitely many pieces that can
be reassembled into a disk of the same area [6].

In this article we look at regions that are defined by a restricted class of quadratic
constraints. Each face of the boundary is required to be planar, spherical, or right con-
ical. We call these quadratic regions. Among the quadratic regions are a special subset
that we call primitive. All the primitive regions are familiar shapes. The question we
ask is when a quadratic region is equidecomposable with a finite disjoint collection of
primitive quadratic regions. When such a decomposition can be produced, we obtain a
formula for the volume of the quadratic region in terms of primitives.
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This article describes an algorithm to decide whether a quadratic region admits such
an equidecomposition and to produce the decomposition when it exists. Our analysis of
the algorithm is reminiscent of the Dehn invariant, which is an invariant attached to the
edges of a polyhedron. Similarly, most of our analysis is focused on the curves formed
by the intersection of two quadric surfaces.

The study of intersections of conics is classical. In Descriptive Geometry, this was
one of the topics “which possess industrial utility and which develop the qualities of
mind so essential in a draftsman” [5]. More recently, the intersection of quadric surfaces
has become relevant for Computer Aided Geometric Design. For a guide to the recent
literature on this subject, see the survey in the introduction to [2].

This algorithm has applications to the proof of the Kepler conjecture, and the ongo-
ing project to formalize that proof. All of the volume calculations that arise in the proof
of the Kepler conjecture are volumes of quadratic regions. In every case, these regions
are equidecomposable with a finite disjoint collection of primitive regions. Thus, all of
the volume calculations of that proof can be handled by an automated procedure.

2 Petal Figures

To motivate what is to come, we begin with the simple case of two dimension petal
figures. To limit ourselves to the area of bounded regions in the plane, we introduce a
large square Ω = (−L, L)2, which will function as our “universe.” When we speak of
the complement of an open set A ⊂ Ω, we mean the set Ω \ A.

Definition 1. A petal is a convex region in Ω, whose boundary is formed by a finite
set of line segments and arcs of circles. A petal figure is a finite union of petals and
complements of petals.

The boundary of a petal has zero area, so it does not matter for our purposes whether it
is included in the petal or not. We will disregard sets of measure zero.

We define the primitive petals to be two different types of sets, which we will call
caps and triangles respectively:

1. Cap: the part interior to a circle, bounded by the circle and a line intersecting the
circle.

2. Triangle (including the interior).

Let χ(A) be the characteristic function of a set A. All characteristic functions will
be considered modulo the subspace of functions generated by characteristic functions
of sets of measure zero.

Problem 1. Given a petal figure A, express χ(A) as an integral linear combination of
characteristic functions of primitive petals.

The solution to this problem is a simple matter. Draw the secant to each circular arc
forming part of the boundary of A, and take the corresponding caps Ci. Let σi = 1, if
locally along the circular arc, A and Ci lie on the same side of the arc. Set σi = −1 oth-
erwise. Working at the level of characteristic functions, we see that χ(A)−

∑
i σiχ(Ci)
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is a linear combination of characteristic functions of polygons. By triangulating each
polygon, we obtain triangles Tj . Then we obtain

χ(A) =
∑

i

σiχ(Ci) +
∑

j

χ(Tj).

2.1 Petal Figures on a Sphere

We can repeat this construction, using a sphere instead of the plane. We take Ω to be
the unit sphere, and we define a spherical petal figure to be a finite boolean combina-
tion (intersections, unions, and complements) of regions bounded by circles on the unit
sphere.

We take the primitives to be the interior of geodesic (great circle) triangles and the
two-sided regions bounded by an arc of a circle and an arc of a great circle.

Following the same procedure, we can rewrite the characteristic function of a spher-
ical petal function as a linear combination of characteristic functions of primitives.

3 Primitive Volumes

Definition 2. The open ball B(x, r) with center x and radius r is the set

{y ∈ R
3 | |x − y| < r.}

Definition 3. The solid lune L(x, v, w) is specified by a point x ∈ R
3, and two unit

vectors v and w. It consists of points y such that

(y − x) · w > 0 ∧ (y − x) · v > 0.

This is the intersection of two half-spaces.

Definition 4. The solid triangle ST (x, r, v1, v2, v3) is specified by a point x ∈ R
3, a

radius r ≥ 0, and unit vectors v1, v2, v3. It is the intersection of two lunes with a ball:

ST (x, r, v1, v2, v3) = L(x, v1, v2) ∩ L(x, v2, v3) ∩ B(x, r).

The vector v2 is repeated, so it has three bounding planar faces, rather than four.

Definition 5. The solid cap SC(x, v, r, c) is specified by an apex x ∈ R
3, a radius r ≥

0, a non-zero vector v giving direction, and constant c. The solid cap is the intersection
of the ball B(x, r) with a half-space:

{y ∈ B(x, r) | (y − x) · v > c}.

Definition 6. The frustum FR(x, v, h′, h, a) is specified by an apex x ∈ R
3, heights

0 ≤ h′ ≤ h, a unit vector v giving its direction, and a ∈ [0, 1]. The set FR is given as

{y | (y − x) · v > a|y − x| ∧ h′ < (y − x) · v < h}.

By squaring the first inequality, we get the equation of a frustum as a quadratic
constraint:

((y − x) · v)2 > a2((y − x) · (y − x)).
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Definition 7. A tetrahedron S(v1, . . . , v4, c1, . . . , c4) is the intersection of four open
half-spaces (when the intersection is nonempty).

y · vi < ci, i = 1, 2, 3, 4.

These sets have all been defined by linear and quadratic constraints.

Definition 8. A primitive region is any of the following.

1. A solid triangle ST .
2. A tetrahedron S.
3. A wedge of a frustum; that is, the intersection of a lune with a frustum:

FR(x, u, h′, h, a) ∩ L(x, v, w),

where h′ < h and u · v = u · w = 0.
4. A wedge of a solid cap; that is, the intersection of a lune with a solid cap:

SC(x, r, u, h) ∩ L(x, v, w), where u · v = u · w = 0.

The solid triangle has one face that is spherical. The curvilinear edges of that face are
arcs of great circles. A wedge of a solid cap also has one face that is spherical. The
curvilinear edges of that face are circles. Two edges are great circles and the third edge
is not necessarily a great circle. A wedge of a frustum has one face that is conical. Two
of the edges of that face are line segments. The other edges are arcs of a circle (a conic
section).

The volumes of these primitive regions are well-known. We will not repeat them
here. These are elementary integrals. The volume formula for a solid triangle goes back
over 400 years to T. Harriot.

4 Statement of Results

The main problem in rough terms is to determine whether a given quadratic region is
equidecomposable with a finite disjoint sum of the primitive regions. This section gives
a precise formulation of the problem.

If the coefficients of the linear and quadratic constraints used to define a primitive
region are algebraic numbers, then we say that the region is definable. We restrict our-
selves to definable sets, to avoid computations with arbitrary real numbers.

Let A be the collection of all sets A obtained by finite boolean combinations (inter-
section, union, and difference) of definable primitive regions. The operations of inter-
section, finite union, and difference carry bounded sets to bounded sets. We call the sets
in A quadratic regions. Let F be the vector space of all rational linear combinations of
characteristic functions of sets A ∈ A (considered modulo rational linear combinations
of characteristic functions of sets of measure zero).

We define the equivalence relation f1 ∼ f2 of F generated by χ(A) ∼ χ(B), if there
is a rigid motion of R

3 carrying A to B, with A, B ∈ A. Let F0 be the vector space of all
rational linear combinations of characteristic functions of definable primitive regions.
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Problem 2. – Given f ∈ F (explicitly presented), determine whether it is equivalent
to a function in F0.

– If f ∈ F is equivalent to a function in F0, find a representative of f in F0.

Equivalent functions have the same (Lebesgue) integral. Thus, an affirmative answer
to the problem for a function f leads to its integral in terms of volumes of primitive
regions.

Theorem 1. There is an algorithm that answers Problem 2.

In particular, the algorithm finds a way, if it exists, to move non-primitive pieces by rigid
motions so that they can be assembled into primitives. For instance, start with a single
primitive region, cut it into two regions that separately cannot be expressed in terms
of primitives, then move the pieces apart by rigid motions. The resulting characteristic
function is not in F0, but it is equivalent to a function in F0. The algorithm finds the
rigid motion that moves these pieces back together.

The method we use is similar to a familiar method of solving a two-dimensional
jigsaw puzzle, by picking up a single piece at a time, and trying to match its edge with
every other piece in turn, until a match is found. (If several pieces have an identical
edge, extra bookkeeping is involved).

I have made no attempt to find the most efficient possible algorithm. It is quite obvi-
ous that significant improvements are possible over what I have presented.

There are various more general problems along these lines that can be posed. There
is no reason to restrict the primitive regions to the particular regions that are used here.
The same problem can be posed with more general collections of primitive regions. I
have not investigated these more general problems. It would be interesting to do so.

5 The Algorithm in Overview

Each A ∈ A is bounded by finitely many surfaces. Each surface is planar, spherical,
or conical. Two surfaces intersect along a segment of a curve. Since the surfaces are
quadrics, each curve has degree at most four. If the degree of the curve is one, it is a
line. If the degree of the curve is two, then it is a conic section. In particular it is a
planar curve. When the intersection of a cone and a sphere is reducible, the irreducible
components are planar. When the intersection of two cones is reducible, the intersection
consists either of planar curves or of a line and an irreducible nonplanar cubic. The
algorithm proceeds by making a careful analysis of these curves and the local geometry
near the curve.

The idea is to proceed in stages, starting with the most complicated types of curves,
and using the equivalence relation to rewrite the function f in equivalent form with
curves of lesser complexity. As we progress, the curves appearing in the representation
of the function become progressively simpler, until finally, the curves are all lines and
circles. At this point, we are able to recognize the primitive regions. The algorithm
reports that f is not equivalent to a function in F0 if at any stage, it is impossible to
eliminate the curves of a given type. The only way that the algorithm fails to find a
representative of f in F0 is for no such representative to exist.
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For each f ∈ F , we work with a representation of f as a linear combination f =∑
aiχ(Ai)of quadratic regions. We will call the elementsAi the constituents of f . As the

algorithm progresses we may change the representation of f and hence its constituents.
As the algorithm progresses we will subtract off various known quantities from the

function f , until finally it becomes the zero function. Thus, the function f does not
denote a fixed element of F , but rather a dynamic quantity that depends on the stage of
the algorithm.

We will repeatedly use the identity:

χ(A) = χ(B) − χ(B \ A) + χ(A \ B).

The set A will be the region we are trying to decompose. The set B will be a set of
known volume that matches A along a surface and a curvilinear edge of that surface.
By matching B along the ‘most complex feature’ of the region A, the remainder χ(A \
B)−χ(B\A) will have lower complexity than A, and this will ensure that the procedure
eventually terminates.

Although the expressions χ(A)−χ(B) and χ(A\B)−χ(B \A) are equal as func-
tions, the data that represent them differ, and it matters in the algorithm which expression
we use. In fact, it is best to retain the expression χ(A) − χ(B) rather than rewrite it in
terms of A \ B and B \ A. Rewriting it would require an analysis of the intersection of
the boundaries of A and B, and this would introduce further complications.

6 Capabilities

The algorithm will require us to construct regions with certain properties, and it will
require us to decide the truth value of various statements. This section collects some of
these auxiliary results upon which the algorithm rests.

6.1 Elementary Theory of the Reals

In the course of the algorithm, there are various statements in the elementary theory of the
reals whose truth value we need to determine. Since the elementary theory of the reals
is decidable, we can make unrestricted use of such in our algorithm. For an overview
of methods of quantifier elimination with applications to geometry, see [1] and [7]. For
example, we may have a point x ∈ R

3 and a set A ∈ A and ask whether every sufficiently
small neighborhoodof x is contained in A. This statement can be expressed as a sentence
in the first order theory of the reals. In our description of the algorithm, we will make use
of such statements, sometimes without explicitly mentioning that they are elementary.
When we use the term ‘elementary’ in this paper, it is in this technical sense.

6.2 Jumps Across Surfaces

Let C be an irreducible component of the intersection of two surfaces:

C ⊂ {x | f1(x) = f2(x) = 0},

defined by polynomials f1 and f2, where the zero sets Zi of fi are planes, spheres, or
cones.
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Let x be a nonsingular point on C that does not lie on any other irreducible compo-
nent of the zero set of (f1, f2). If the two surfaces are smooth at x and if their tangent
planes to the surfaces at x are not equal, then by the implicit function theorem, in suf-
ficiently small balls around x, the topology of the triple (x, C, Zi) is that of a point,
diameter, and plane through the diameter.

If C is nonplanar, these conditions are satisfied for all but finitely many points of
C. In fact, C meets another component of Z1 ∩ Z2 with at most finite multiplicity. The
number of singular points on C is finite. The set of points x for which the tangent planes
are equal is clearly Zariski closed. Hence if the tangent planes are equal at infinitely
many x, they are equal for all x ∈ C. Now if the two surfaces are cones, the tangent
planes to the curve at three different points, none on the same ray through the apex,
determine the apex, and hence determine the cone. Thus, the intersection of two distinct
cones cannot give the same collection of tangent planes along the curve. If the two
surfaces are a cone and a sphere, the segments from the apex to the curve are tangents
to the sphere. Hence they have the same length. This forces the curve of intersection to
be a circle, contrary to the assumption that C is nonplanar. So indeed these conditions
are satisfied for all but finitely many points of C.

In particular, locally at x, C separates Z1 into two connected components

E(f1, ±f2) = {x | f1(x) = 0, ±f2(x) > 0}.

Let A be a quadratic region. For every f1, f2, consider the elementary statement:

P (f1, f2, C, x, A): For every sufficiently small open ball B(x, ε) around x and for every

y ∈ B(x, ε) ∩ E(f1, f2),

there is a nonempty open ball B(y, δ) ⊂ B(x, ε) such that

B(y, δ) ∩ {z | f1(z) > 0} ⊂ A.

Let ψ(f1, f2, C, x, A) = 1 if P (f1, f2, C, x, A) is true and 0 otherwise. If f =∑
i aiχ(Ai), we have a corresponding value

J(f, f1, f2, C, x) =
∑

i ai(ψ(f1, f2, C, x, Ai)−
ψ(−f1, f2, C, x, Ai)).

This function measures the jump in the value of the function f across the zero set of f1,
on the side E(f1, f2). It is elementary to compute it for a given x ∈ C.

If every intersection of B(x, ε) ∩ {y | f1(y) = 0} with a surface f2 = 0 defining A
is contained in C, then except for finitely many x ∈ C, the element y in the statement
P (f1, f2, C, x, A) does not lie on any surfaces defining A except f1 = 0. (We will only
use the jump function when this condition is met.) Thus, the set B(y, δ) ∩ {z | f1(z) >
0} for δ sufficiently small is either disjoint from A or is entirely contained in A.

Under these same conditions, the jump J(f, f1, f2, C, x) is a locally constant func-
tion of x on C \ X , where X is a computable finite set of exceptional points. The set
C \X is a finite number of topological intervals. Thus, J(f, f1, f2, C, x) can be consid-
ered a function on a finite domain, computed by picking a test point x on each interval.
(We have more to say in Section 6.3 about how to specify the topological intervals).
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We say that C is a boundary curve of f ∈ F if there is a jump

J(f, f1, f2, C, x) 	= J(f, f1, −f2, C, x),

for all x in some interval of C for some (f1, f2). We also say that C is a boundary curve
of A ∈ A, if it is a boundary curve of χ(A) ∈ F . We say that f1 = 0 is a boundary
surface of A ∈ A if

J(χ(A), f1, ±f2, C, x) 	= 0.

for some choice of sign ± (again for x in some interval of C), and some f2 such that
C is an irreducible component of the zero set of (f1, f2). We say that the jump through
f1 = 0 is coherent across C (at x) if

J(f, f1, f2, C, x) = J(f, f1, −f2, C, x),

for every f2 such that C is an irreducible component of the zero set of (f1, f2).

6.3 Intervals on a Curve

There are several arguments that make use of a simple arc of an algebraic curve on
a quadric surface. Since we do not have parameterizations of the curves, we use the
surface to simplify matters.

Suppose that C is a nonplanar curve on a cone S, given as an irreducible component
of the intersection of two cones. The lines through the apex and the circles form isother-
mal coordinates on S that can be used to partition the cone into small ‘rectangles.’

We claim that the rectangles can be chosen so that the intersection of C with each
rectangle is a simple arc (except at singular points of C and the apex of the cone).
Simply pick lines on the rectangular grid that include every tangent line to C that lies
on the cone, and circles that include every circle on S tangent to C. On each such
rectangle, each branch of C is a continuous function of the isothermal coordinates,
and is therefore homeomorphic to an interval. By restricting the size of the rectangles
further, we may assume that there is a single branch of C in each rectangle. (Checking
that C is a univalent function on a rectangle is an elementary test.)

A similar procedure works for a curve C on a sphere S. We may pick two pairs
of antipodal points (that avoid C), and then take a collection of great circles that pass
through one pair or the other. This gives a system of ‘rectangles’ that can be used in a
similar manner to break C into a finite set of intervals. We will eventually relate these
rectangles to primitive regions. With that in mind, we draw a diagonal to each rectangle,
breaking it into two spherical triangles.

The possible singularities of C are mild in the case of the intersection of a cone with
another cone or sphere. It can be verified that if there are two branches of the curve
C meeting at a singular point x on the curve, then it is always possible to separate the
branches in a neighborhood of x by a plane passing through x. This is true even if x is
an apex of a cone. We can choose the rectangles so that the singular points of C always
lie on an edge of a rectangle. By cutting the rectangles by finitely many planes, we
arrive at a situation where we separate all the branches of the curve C. We refer to these
rectangles, possibly cut into smaller pieces by branch-separating planes as charts for C
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(with respect to a sphere or cone S). When the surface is a sphere, by triangulating if
necessary, we may assume that each chart is a spherical triangle.

We can choose the charts sufficiently small, so that on the intervals I they define,
the jump function J is constant on each interval. We write J(f, f1, f2, C, I) for the
common value of J(f, f1, f2, C, x), for x ∈ I ⊂ C.

6.4 Automorphisms of Curves

A bijective rigid motion T : A → B between subsets A, B ⊂ R
3 is a congruence. A

congruence of a set A with itself is an automorphism of that set. A nonplanar irreducible
algebraic curve in R

3 has only finitely many automorphisms.
Given an irreducible nonplanar component C of the intersection of a cone with a

sphere or another cone, we can determine the finite group of rigid motions that map the
curve to itself. This is elementary. A rigid motion T is determined by the finitely many
coordinates of its underlying affine transformation

T (x) = Ax + b.

The statement ‘T is automorphism of C’ can be expressed in the elementary language
of the real numbers, with free parameters A and b. By eliminating quantifiers from that
statement, we obtain explicit equations for the possible automorphisms T .

For each automorphism T , we can solve T (x) = x for the set of fixed points, and
then intersect the set of fixed points with C to determine the finite set of fixed points
of T on C. By passing to smaller charts in Section 6.3, we can assume that each point
of C that is fixed by some automorphism is an endpoint of an interval, so that no fixed
points appear on an open-ended interval.

We may repeatedly bisect the charts (and the intervals of the curve C they contain)
until each (open-ended) interval I is so small that the only automorphism T such that
T (I) meets I is the identity automorphism.

6.5 Automorphisms and Boundary Edges

If f =
∑

aiχ(Ai) ∈ F , we can form a list of all of its boundary curves C1, . . . , Ck. By
applying quantifier elimination on each of the statements ‘T is a rigid motion carrying
Ci bijectively to Cj’, we can explicitly determine all of the finitely many congruences
between the boundary curves of f . We can subdivide each boundary curve Ci into
small open-ended intervals Iir (that cover Ci except for the finitely many endpoints), as
explained in Section 6.4, so that T (Iir) does not meet Iir , whenever T is a non-trivial
automorphism of Ci.

Fix one boundary curve C = C0, and consider all congruences from the other curves
Ci to C (including C0 itself). Mark all endpoints of the intervals T (Iir) ⊂ C, as we run
over all congruences T for all i. Use these finitely many points so obtained, to further
refine the intervals I0r into smaller intervals I ′0r′ . If some I ′0r′ meets some T (Iir), then
I ′0r′ is contained in T (Iir).

By construction, if T ′ : C → Ci is a congruence, then T ′(I ′0r′) is contained in
a single interval Iir of Ci. The intervals I ′ir′ = T ′(I ′0r′ ) then give a refinement of
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the intervals Iir that is independent of the choice of T ′ : C → Ci. In this way, we
obtain a collection of intervals I ′ir′ on each curve Ci (that cover except for finitely
many endpoints) such that every congruence carries intervals bijectively to intervals.

6.6 The Edge Coherence Condition

Let C be an irreducible curve that has only a finite number of automorphisms.
Let f ∈ F . Let C1, . . . , Ck be the boundary curves of f that are congruent to C. Let

T be the set of all congruences T : Ci → C, as i ranges from 1 to k.
The group of motions of R

3 acts on F by

(T∗f)(x) = f(T−1x).

With this action, T∗χ(A) = χ(TA). We define DC(f) =
∑

T∈T T∗f ∈ F . This is
well-defined in the sense that it does not depend on the expression for f as a sum of
characteristic functions. Note that DC depends on f through the list C1, . . . , Ck of
boundary curves, so it is not a linear operator on F .

If f =
∑

i aiχ(Ai). Then

DC(f) =
∑

T∈T

∑

i

aiχ(TAi).

Partition each Ci into intervals I ′ir as described in Section 6.5. Define intervals Ir on
C by Ir = T (I ′ir) for any congruence T : Ci → C.

We have the following necessary condition for equidecomposability. If the follow-
ing condition is not met, the function f is not equivalent to a function in F0, and the
algorithm terminates.

(Edge Coherence Condition) For every nonplanar irreducible curve C, every interval
Ir of C as constructed above, and every nonzero quadratic function f1 whose zero set
contains C, the function DC(f) has jumps through f1 = 0 that are coherent across C
along Ir.

This is stated as a condition on infinitely many curves and quadratic functions. However,
it reduces to a finite calculation. We can restrict to curves C that are congruent to an
edge curve of f , because otherwise the condition always holds. We can restrict further,
to curves C that equal one of the edge curves C1, . . . , Ck. We can restrict the condition
further to quadratic functions f1 that have the form T∗f ′

1, where f ′
1 defines a boundary

surface of some constituent Ai of f , the zero set of f ′
1 contains some Cj , and T : Cj →

C is a congruence. This reduces the edge coherence condition to a finite condition.
We will omit the proof that any function equivalent to a function in F0 satisfies

the edge coherence condition. There are two main ingredients to the proof. The first
ingredient is to check that the edge coherence condition holds with respect to DC(f)
if and only if it holds for a function D′

C(f), where D′
C is defined exactly as DC , but

with respect to a larger set of curves {C1, . . . , Ck, Ck+1, . . . , C�}, where the additional
curves are congruent to C, but otherwise arbitrary. The second ingredient is to check
that if A ∈ A and T ′ is any rigid motion, the function f ′ = f + a(χ(A) − χ(T ′A))
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satisfies the edge coherence condition if and only if f does. The proof of this second
ingredient is based on the first ingredient.

We note that the edge coherence condition is a Dehn invariant type condition. With
the original Dehn invariant, all the edges are line segments, which are all locally con-
gruent. This helps to explains why the Dehn invariant, which is a single invariant for
polyhedra, must be expanded to a collection of conditions for general quadratic regions.
We have a separate condition for each congruence type of curve.

7 Remove Nonplanar Intersections

We are ready to give details of the algorithm. The first goal is to adjust f by a known
quantity so that the jumps are coherent across all nonplanar curves. At this stage of the
algorithm, the edge coherence condition has been tested, and it is assumed to be valid.

We show how to make the jumps of f coherent across irreducible nonplanar compo-
nents of an intersection of a cone with another cone or with a sphere.

Let f =
∑

aiχ(Ai), and let C be an irreducible nonplanar curve for which the edge
coherence condition holds. We assume that it is congruent to some boundary curve Cj

of f . Fix an irreducible quadratic function f2 whose zero set contains C. Partition C
into interval Ir as was done in the construction of DC(f). Automorphisms of C permute
the intervals Ir . Let I be a minimal set of intervals in the sense that every interval Ir is
congruent to exactly one element of I.

Let A = Ai be a constituent of f that has Cj as a boundary curve. Let f1 be an irre-
ducible quadratic function whose zero set contains Cj and such that the jumps through
f1 = 0 are not coherent across Cj along some interval I ′′ of Cj . There is a unique
I ∈ I and unique congruence T : C → Cj such that I ′′ = T (I).

First we handle the cases when T∗f2 and f1 are not proportional functions.
Assume also that f1 = 0 defines a cone. Recall that each interval I ′′ = T (I) was

defined on some small chart, which is a rectangle on the cone, possibly cut into smaller
pieces by planes. Each rectangle on the surface of the cone uniquely determines a wedge
of a frustum. The planes cutting the rectangle into a chart cut the frustum into smaller
pieces. One of those pieces F corresponds to the interval T (I). The function T∗f2 cuts
F into two pieces

F± = {x ∈ F | ±(T∗f2)(x) > 0}.

The fresh boundary from this cut meets the chart along T (I).
When f1 = 0 defines a sphere, the argument is almost the same. In this case the

charts lie on the surface of a sphere. The chart is a spherical triangle, which is the
boundary of a uniquely determined solid triangle F . The function T∗f2 cuts F into
two pieces. In both cases (both cone and sphere), the pieces F± belong to A. The only
nonplanar edge on these pieces is the interval I ′′ on Cj .

There are unique constants b± such that

g = aiχ(Ai) + b+χ(F+) + b−χ(F−)

has
J(g, f1, ±T∗f2, Cj , I

′′) = 0.
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In particular, with this choice of constants, the jumps are coherent through f1 = 0
across I ′′. We replace f with the function

f + b+(χ(F+) − χ(T−1F+)) + b−(χ(F−) − χ(T−1F−)).

It has several important properties. It is equivalent to f . It satisfies the edge coherence
condition if and only if the function f does. The incoherent jump across Cj along T (I)
has been translated by the rigid motion T to an incoherent jump across C along I .

Call this equivalent function f . Repeat this procedure until we have moved all in-
coherent jumps to intervals I ∈ I, except possibly when f1 is proportional to T∗f2. If
we take a small loop around an interval I ′′, we get a jump in value in the function f
each time we cross a boundary surface. As we make a full loop, we return to the origi-
nal value of the function f . Thus, the sum of the jumps as we complete a loop is zero.
Once all the jumps around Cj are zero, except those along T∗f2 = 0, then the zero sum
condition forces the jumps along T∗f2 = 0 to be coherent. Thus, coherence of this final
surface is automatic, and we find that the only incoherent jumps are confined to interval
I ∈ I.

By construction, there are no congruences between different intervals in I. We have
‘used up’ all the congruences and automorphisms. This implies that the edge coherence
condition for DC(f) yields that the jumps of f are coherent through every f1 across
every interval I ′′.

This completes this stage of the algorithm: we have replaced f with an equivalent
function that has the property that all jumps are coherent through irreducible nonplanar
curves.

8 Planar Intersections

At this point in the algorithm, every jump that is not coherent is across a planar curve.
The final steps are to eliminate spherical boundaries and to eliminate conical bound-
aries. What remains will be a polyhedron, which can be triangulated into tetrahedra,
which are primitive regions.

8.1 Spherical Surfaces

In this step we assume that all boundary curves are planar. For quadratic regions, this
implies that the curves are lines or conic sections.

We work through the spherical surfaces in groups according to the radius of the
sphere, starting with the largest radius. In this step of the algorithm there are no necessary
conditions for equidecomposability. The spherical surfaces can always be eliminated.

When one of the boundary surfaces is a sphere, the intersections are always cir-
cles. Thus, the spherical part of the boundary of a quadratic region forms a spherical
petal figure. We have seen in Section 2.1 how to decompose a spherical petal figure
into spherical caps and spherical triangles. Corresponding to this decomposition of the
spherical petal figure is a decomposition of the solid ball into wedges of solid caps and
solid triangles. These are primitives. Thus, we can always eliminate a given spherical
surface.
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The boundary of the wedge of a solid cap consists of three planar surfaces and a
spherical surface. The boundary of the solid triangle also consists of three planar sur-
faces and a spherical surface. In this process, we may introduce new jumps along lines
C given by the intersection of two planes. These will be handled at a later stage of the
algorithm.

8.2 Conic Sections

At this point of the algorithm we assume that every jump occurs along is bounded by
planar and conical surfaces, and that every boundary curve is planar (a line or conic
section).

The next step is to produce coherence of jumps along cones across conic sections
(other than lines and circles). We will deal with lines and circles later. This part of the
algorithm is similar to the elimination of nonplanar curves.

We eliminate boundary curves that are not lines and circles. We have a necessary
condition that must be satisfied. If this condition is not satisfied, then equidecompos-
ability fails, and the algorithm terminates.

(Conic Section Coherence Condition) For every conic section C, other than circles and
lines, every interval Ir of C constructed as above, and every nonzero quadratic function
f1 defining a cone that contains C, the function DC(f) has jumps through f1 = 0 that
are coherent across C along Ir.

The procedure is essentially identical to the process of eliminating nonplanar curves on
cones. We fix a conic section C that satisfies the conic section coherence condition. We
let F be a suitable frustum, which we cut into two pieces F± by a plane that meets the
conic boundary along an interval I ′′ ⊂ Cj , for some conic section Cj that is congruent
to C. The pieces F± lie in A. The edges of the pieces F± consist of I ′′ ⊂ Cj , and
linear and circular segments. By means of a congruence T : C → Cj , we transport
the jumps so that they occur along an interval of C, rather than an interval of Cj . Once
all the jumps lie along intervals of C, and once we have ‘used up’ the congruences
and automorphisms, the conic section coherence condition for conic section implies
coherence of jumps.

8.3 Circles

At this stage of the algorithm we assume that all boundary curves are lines and circles.
These lines and circles form isothermal coordinates on each cone. Using these lines
and circles, we break the surface into curvilinear rectangles on the cone. Each such
rectangle is the conic surface of a uniquely defined wedge of a frustum, which is a
primitive region. Subtracting off these frustums, we obtain a region in which the jump
across each conical surface is zero. In other words, they no longer form part of the
boundary of the quadratic regions. Thus, after subtracting the frustums, we are left with
a polyhedron.
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8.4 Polyhedra

As we mentioned above, once all spherical and conical surfaces have been eliminated,
we are left with a polyhedron. This can always be triangulated into tetrahedra, which
are primitives. Thus, the algorithm is complete.

9 Example

In this section we show an explicit example of a volume computed by this algorithm.
The region we consider occurs many times in the proof of the Kepler conjecture [3]. It
is called a quoin.

Let a, c, t be constants with a < c and 0 < t. We define the following quadratic
region Q(a, c, t):

{(x, y, z) | z > 0, a < y < tx, x2 + y2 + z2 < c2}.

Note that if Q(a, c, t) is nonempty, we have

(a/t)2 + a2 + 02 < x2 + y2 + z2 < c2.

This condition implies that t = a/
√

b2 − a2 with a < b < c. We assume that this
condition holds for some b. The volume q(a, c, t) is then given explicitly as follows:

6 q(a, c, t) = (a + 2c)(c − a)2 arctan(e)
+a(b2 − a2)e
−4c3 arctan(e(b − a)/(b + c)),

(1)

where e ≥ 0 is given by e2(b2 − a2) = (c2 − b2).
This formula is obtained by applying the algorithm to the given quadratic region. All

the boundary curves are planar. In fact, every curve is a circular arc or a line segment. No
surfaces are cones. Thus, the volume is computed by a particularly simple application
of the algorithm.

We see that the intersection of Q(a, b, t) with the sphere of radius c is a spherical
petal figure. After subtracting off the contribution from the petal figure, we are left with
a tetrahedron. This leads to the given formula for volume.

10 Applications to Flyspeck

In 1998, Sam Ferguson and I gave a proof of the Kepler Conjecture, which asserts that
no packing of congruent balls has density greater than the face-centered cubic packing.
The proof relies on a significant number of computer calculations.

The refereeing process took several years. As a result of the difficulties in checking
the correctness of the Kepler conjecture, I have become interested in formal theorem
proving, as a way of checking complex computer proofs. In 2003, I announced a project
called Flyspeck, whose purpose is to give a completely formal proof of the Kepler
Conjecture [4]. The name ‘Flyspeck’ comes as an expansion of the acronym ‘F*P*K’,
which stands for the ‘Formal Proof of Kepler.’
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In addition to the computer part of the proof, the proof of the Kepler Conjecture in-
volves nearly 300 pages of traditional mathematical arguments. The Flyspeck project
aims to formalize the traditional mathematical portions of the proof as well. The non-
computer parts of the project are not nearly so far along. In my view, a major impedi-
ment to completing this part of this project is a lack of modularity in the design of the
original proof.

A significant part of these 300 pages consists of volume calculations of quadratic
regions. In the original proof, these were all obtained by hand, using a variety of tech-
niques. Every one of the volume calculations falls within the scope of the algorithm of
this paper. (They can all be expressed as a linear combination of primitives.) As a result
of this paper, these calculations can be entirely automated.
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Abstract. We present an application of automatic theorem proving
(ATP) in the verification of constructions made with dynamic geometry
software (DGS). Given a specification language for geometric construc-
tions, we can use its processor to deal with syntactic errors. The processor
can also detect semantic errors — situations when, for a given concrete
set of geometrical objects, a construction is not possible. However, dy-
namic geometry tools do not test if, for a given set of geometrical objects,
a construction is geometrically sound, i.e., if it is possible in a general
case. Using ATP, we can do this last step by verifying the geometric con-
structions deductively. We have developed a system for the automatic
verification of regular constructions (made within DGSs GCLC and Eu-
kleides), using our ATP system, GCLCprover. This gives a real-world
application of ATP in dynamic geometry tools.

1 Introduction

Dynamic geometry software (e.g., Cinderella, [24,26], Geometer’s Sketchpad,
[10,27] Cabri, [14,25]) visualise geometric objects and link formal, axiomatic
nature of geometry (most often — Euclidean) with its standard models (e.g.,
Cartesian model) and corresponding illustrations. The common experience is
that dynamic geometry software significantly helps students to acquire knowl-
edge about geometric objects and, more generally, for acquiring mathematical
rigour. However, most (if not all) of these programs use only geometric concepts
interpreted via concrete instances in Cartesian plane. Namely, a construction
is always associated with concrete fixed points (with concrete Cartesian coordi-
nates). In such environments, some constructions (usually by ruler and compass)
are illegal (e.g., if they attempt to use the intersection of two parallel lines), but
� This work was partially supported by Serbian Ministry of Science and Technology
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40 P. Janičić and P. Quaresma

the question if such construction is always illegal or it is illegal only for given
particular fixed points is left open (if a construction is always possible, we will
call it regular). Indeed, for answering such question, one has to use deductive
reasoning, and not only a semantic check for the special case. Consider one sim-
ple example: given (by Cartesian coordinates) three fixed distinct points A, B,
C, we can construct a point D as an image of point C in translation TAB; later
on, if we try to construct an intersection of lines AC and BD, we will discover
that there is no such intersection (since these two lines are parallel). This holds,
not for some specific points A, B, C, with D determined as above, but for all
triples of points A, B, C. So, in this situation, the user of a geometry tool should
get the information that his/her construction is illegal, and moreover, that it is
illegal not only for a given special case, but always. In this way, the deductive
nature of geometric conjectures and proofs should be linked to the semantic
nature of models of geometry and, also, to human intuition and to geometric
visualisations.

In the rest of this paper we present our system which addresses the above
problem. Our system is implemented within dynamic geometry software GCLC
[11] and Eukleides [19,23] and uses a geometry theorem prover, GCLCprover [12],
based on the area method [4,5]. Our framework, GeoThms [21,22], is a Web tool
that integrates the above components with a repository of theorems related to
geometric constructions.

Closely related to our system is Gool — a geometric object-oriented lan-
guage and a system for geometric computation, reasoning and visualisation [15].
This system focuses on symbolic manipulation of geometric objects (in algebraic
form). Regarding handling degeneracy conditions and illegal constructions, there
is a consistency checking system [16]. When an object is modified, or a new
relation among existing object is declared, the system checks if this action is
allowed, i.e., if it is consistent with the rest of the construction. This check
is reduced to testing if a corresponding algebraic system has solutions in real
numbers. Also, related to our system is Geometry Explorer, based on the full-
angle method [30]. This system provides tight integration of DGS and ATP, and
produces human-readable proofs of properties of constructed objects (in LATEX
form). MMP/Geometer also combines features of DGS and ATP, and uses dif-
ferent proving methods, including those generating synthetic, human-readable
proofs [8,9]. There are several other systems that in some degree link DGSs with
ATPs: Geometry Expert (GEX) [7]; GEOTHER [28,29]; Cinderella [13,24,26];
Discover [2]; GeoView [1], and GeoGebra [6]. However, none of these systems
incorporates a verification system for constructions which provides arguments in
the form of synthetic, readable proofs.

Paper Overview. Section 2 briefly discusses geometric constructions, the do-
main of our system. Section 3 talks about parts of our framework; subsection 3.1
is about dynamic geometry software, especially GCLC and Eukleides; subsec-
tion 3.2 is about automated theorem proving in geometry and especially the
prover GCLCprover and subsection 3.3 briefly describes the integration of these
tools in a Web Geometric Framework. Section 4 presents the verification system
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and the covered critical constructions. Section 5 presents some examples. Sec-
tion 6 discusses further work, and in Section 7 we draw final conclusions.

2 Geometric Constructions

For hundreds, or even thousands of years, geometric construction problems have
been one of the most attractive parts of geometry and mathematics. A geometric
construction is a sequence of specific, primitive construction steps. These primi-
tive construction steps (also called elementary constructions) are based on using
a ruler (or a straightedge1) and a compass, and they are:

– construction (with a ruler) of a line such that two given points belong to it;
– construction (with a ruler) of a segment connecting two points;
– construction of a point which is an intersection of two lines (if such a point

exists);
– construction (with a compass) of a circle such that its centre is one given

point and such that a second given point belongs to it;
– construction of intersections between a given line and a given circle (if such

points exist).

By using this set of primitive constructions, one can define more complex,
compound constructions (e.g., construction of a right angle, construction of the
midpoint of a line segment, etc.).

The abstract (i.e., formal, axiomatic) nature of geometric objects has to be
distinguished from their usual interpretations. A geometric construction is a
procedure consisting of abstract steps and it is not a picture. However, for each
construction there are its counterparts, its interpretations in the standard Carte-
sian model.

3 Component Modules of the Automatic Verification
System

In this section, we present the building blocks of our automatic verification
system for geometric constructions.

3.1 GCLC and Eukleides

GCLC is a tool for teaching and studying mathematics, especially geometry
and geometric constructions, and also for storing descriptions of mathematical
figures and for producing digital illustrations.2 GCLC provides support for a
1 The term “straightedge” is sometimes used instead of “ruler” in order to emphasise

there are no markings which could be used to make measurements.
2 GCLC package is freely available from www.matf.bg.ac.yu/~janicic/gclc/. The

mirrored version is available from emis (The European Mathematical Information
Service) www.emis.de/misc/index.html. There are versions of GCLC for Windows
and for Linux.
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range of geometric constructions and isometric transformations. In GCLC there
is also support for symbolic expressions, second order curves, parametric curves,
control structures, etc. GCLC is based on the idea that constructions are for-
mal procedures, rather than drawings. Thus, in GCLC, producing mathematical
illustrations is based on “describing figures” rather than of “drawing figures”.
All figures are described in this spirit, using the GC language. These descrip-
tions directly reflect the mathematical contents, i.e., the meaning of mathemat-
ical objects to be presented, and are easily understandable to mathematicians.
WinGCLC is the Windows version of GCLC, with a rich graphical interface and
it provides a range of additional functionalities to GCLC. It supports interac-
tive work, animations, traces, “watch window” for monitoring values of selected
objects, etc. [11].

Eukleides3 is an Euclidean geometry drawing language. There are two pro-
grams related to it. The first is eukleides, a processor for describing geometric
figures within a (La)TeX document. It can also convert figures in Eukleides
format to EPS format. The second is xeukleides, a GUI front-end for cre-
ating interactive geometric figures. This program can also be used for editing
Eukleides code. Eukleides, like GCLC, has been designed to be close to the tra-
ditional language of elementary Euclidean geometry. We have developed a tool
euktogclcprover, that converts Eukleides files to GCLCprover files, enabling
the prover to be used with geometric constructions described within both GCLC
and Eukleides.

We have developed a XML-based format (and accompanying tools) for repre-
senting geometric constructions and proofs. This format enables a suitable ren-
dering of this contents, and also serves as a convenient exchange format between,
not only GCLC, Eukleides, and GCLCprover, but other geometric tools as well.

3.2 GCLCprover, an ATP Based on the Area Method

Automated theorem proving in geometry has two major lines of research: syn-
thetic proof style and algebraic proof style (see, for instance, [17] for a survey).
Algebraic proof style methods are based on reducing geometry properties to
algebraic properties expressed in terms of Cartesian coordinates. These meth-
ods are usually very efficient, but the proofs they produce often do not reflect
the geometric nature of the problem and, basically, they give only yes or no
conclusions. Synthetic methods attempt to automate traditional geometry proof
methods and to produce human-readable proofs.

The area method is a synthetic method providing traditional (not coordinate-
based), human-readable proofs [4,5]. The proofs are expressed in terms of higher-
level geometric lemmas and expression simplifications. The main idea of the
method is to express hypotheses of a theorem using a set of constructive state-
ments, each of them introducing a new point, and to express a conclusion by
3 Eukleides is available from http://www.eukleides.org, There are versions for a

number of languages. The second author of this paper is responsible for the Por-
tuguese version of Eukleides: EukleidesPT is available from http://gentzen.mat.
uc.pt/~EukleidesPT/

http://gentzen.mat.uc.pt/~{}EukleidesPT/
http://gentzen.mat.uc.pt/~{}EukleidesPT/
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an equality of expressions in some geometric quantities (e.g., the signed area of
a triangle), without referring to Cartesian coordinates. The proof is then based
on eliminating (in reverse order) the points introduced, using for that purpose a
set of appropriate lemmas. After eliminating all introduced points, the current
goal becomes an equality between two expressions in quantities over independent
points. If it is trivially true, then the original conjecture was proved valid, if it is
trivially false, then the conjecture was proved invalid, otherwise, the conjecture
has been neither proved nor disproved. In all stages, different simplifications are
applied to the current goal. The method does not have branching, which makes it
very efficient. The area method is applicable to a wide range of constructions and
a wide range of geometric conjectures. For details of the method and correctness
proofs for all simplification steps see [20].

We have implemented GCLCprover, a theorem prover that allows formal de-
ductive reasoning about objects constructed with the help of DGSs. The prover
is based on the area method. It produces proofs that are human-readable and
with an explicit justification for every proof step. The prover can be used in
conjunction with other dynamic geometry tools. Apart from the original imple-
mentation by its authors [4,5], we are aware of another two geometry provers
based on the area method: one within the Theorema project [3], and one within
the system Coq (COQareaMethod) [18].

GCLCprover is tightly integrated with dynamic geometry tools (GCLC and
Eukleides). This means that one can use the prover to reason about a a DGS
construction (i.e., about objects introduced in it), without changing and adapt-
ing it for the deduction process — the user only needs to add the conclusion
he/she wants to prove. The geometric constructions made within the DGSs are
internally transformed into primitive constructions of the area method, and in
some cases, some auxiliary points are introduced.

GCLCprover can prove many complex geometric problems in milliseconds,
producing readable proofs (in LATEX or XML form).

3.3 The Geometric Framework

GeoThms4 is a framework that links dynamic geometry software (GCLC, Euk-
leides), geometry theorem provers (GCLCprover), and a repository of geometry
problems (geoDB). GeoThms provides a Web workbench in the field of con-
structive problems in Euclidean geometry. Its tight integration with dynamic
geometry tools and automatic theorem provers (currently GCLC, Eukleides,
GCLCprover and COQareaMethod) and its repository of theorems, figures, and
proofs, give the user the possibility to easily browse through a list of geometric
problems, their statements, illustrations and proofs. It also provides an interface
to the DGS and ATP components, allowing the interactive use of those pro-
grams and also supporting the automatic verification of regular constructions
performed within the DGSs.

4 GeoThms is accessible from http://hilbert.mat.uc.pt/~geothms
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4 Integrated Automated Verification System

The system for automated deductive testing whether a construction is regular,
is built into the DGSs, GCLC and Eukleides, and uses GCLCprover. While
processing the input file (with a description of a geometrical construction), a
DGS provides to the built-in theorem prover all construction steps performed
(transformed into a suitable form). This system can be switched off or on.

When the main module of GCLC encounters a construction step that can-
not be performed (for instance, two identical points do not determine a line),
it reports that the step is illegal with respect to a given set of fixed points (at
this point, this is only an argument based on semantics, on calculations concern-
ing concrete fixed points), and then it invokes the theorem prover. After that,
the prover is ran on the critical conjecture (e.g., it tries to prove that the two
points are identical) and, if successful, it reports that the construction step is
always illegal/impossible. This is a result of a deduction process based on formal
description of constructions, not on coordinates of the concrete points involved.

We point out that the “errors” that our deduction system detects and reports
about are substantially different from syntax errors detected by the parsing mod-
ules of DGSs. Syntax errors are usually simple, local, must be eliminated from the
description of the construction, and are not related to any deeper underlying ge-
ometrical knowledge. On the other hand, an illegal construction detected by our
system signals the user to reconsider the whole of the construction, and claims that
the construction is impossible no matter how the fixed points were selected. From
a semantical point of view, we can eliminate some of the errors that our system
reports about: for instance, if we use homogeneous coordinates, we could treat in-
tersections of lines uniformly and there would be no exception for parallel lines.
However, we don’t want our tool to avoid errors within constructions, we want to
explore the properties that are deeply related to the intended construction and to
guide the user through the construction process. This approach reveals properties
of Euclidean constructions, therefore it also has an educational role.

Realm. Our automatic verification deductive-check system currently covers the
following critical constructions:

– constructing a line given two points (error if the two points are identical);
– constructing an intersection of two lines (error if the two lines are parallel);
– constructing a segment-bisector, given its two endpoints (error if the two

points are identical);
– constructing an angle-bisector of the angle determined by three points A, B,

C (error if A and B, or C and B are identical);
– calculating an angle determined by three points A, B, C (error if A and B,

or C and B are identical);

Geometric objects that are subject to deductive verification have to be made
within the DGSs using the following primitives:

– introducing a new point;
– constructing a line given two points;
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– determining the intersection of two lines;
– constructing the midpoint of a segment;
– constructing the segment bisector;
– constructing the line passing through a given point, perpendicular to a given

line;
– constructing the foot from a point to a given line;
– constructing the line passing through a given point, parallel to a given line;
– constructing the image of a point in a given translation;
– constructing the image of a point in a given scaling transformation;
– selecting a random point on a given line.

which are internally transformed into primitive constructions of the area method.
For more details about this transformation see [20].

It is worth pointing out that although GCLC and Eukleides have support for a
large number of constructions, only few of them can be illegal. The above list of
critical constructions almost exhaust them. The only possible illegal constructions
which are not covered by the current version of our system are constructions of in-
tersection points of a circle and a line, and of two circles. Corresponding geometric
conjectures cannot be generally handled by the area method and GCLCprover. In
our future work, we will consider extending our system by additional deduction
methods that can also cover this sort of constructions.

5 Worked Examples

In this section we give several examples for which our system can deductively
test if they are regular. There is also one example that is out of the scope of the
current version of our system.

5.1 Example 1

Consider the example discussed in Section 1: given three fixed distinct points
A, B, C, let us construct a point D as an image of the point C in translation
TAB; draw lines AB and CD (denoted p and q) and label all the points. The
GCLCcode for this construction and the corresponding illustration, are shown
in Figure 1.

If we attempt to construct a point X as the intersection of the lines p and
q (by adding the command intersec X p q at the end of the code given in
Figure 1), we will get the following message:

Error 14: Run-time error: Bad definition.
Can not determine intersection. (Line: 18, position: 10)
File not processed.

This information is semantic-based, it is true for the given particular points
A, B, C, i.e., for these three particular points, the lines p and q are parallel.
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point A 20 10

point B 40 25

point C 70 15

translate D A B C

line p A C

line q B D

drawline A B

drawline C D

cmark_lt A

cmark_lt B

cmark_lt C

cmark_lt D

A

B

C

D

Fig. 1. GCLC code and the corresponding illustration for the example with parallel
lines

However, if our deductive-check system is turned on, we will also get additional,
much deeper information:

Deduction check invoked: the property that led to the error is
tested for validity.

Total number of proof steps: 18

Time spent by the prover: 0.001 seconds
The conjecture successfully proved - the critical property always holds.
The prover output is written in the file error-proof.tex.

This means that it was proved that lines p and q never intersect, so this
construction is always illegal. The proof of this fact is generated by the prover
GCLCprover and the proof outline is given in Figure 2. Note that the condition
p‖q is equivalent to the condition that the areas of triangles ABD and CBD are
equal.

5.2 Example 2

Consider the example given in Figure 3. This example is very similar to the
previous one, the only difference is in the way point D is determined. In both
cases point D gets the same Cartesian coordinates. However, in the first example,
D is determined by a construction based on the points A, B, C. In contrast, in the
second example, point D is determined by Cartesian coordinates, independently
from the points A, B, C.

This time, it is not possible to deduce that this construction is always illegal:

Run-time error: Bad definition. Can not determine intersection.
(Line: 16, position: 10)
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(1) SABD = SCBD , by the statement

(2) (SABC + (1 · (SABB + (−1 · SABA)))) = SCBD , by Lemma 29 (point D eliminated)

(3) (SABC + (1 · (0 + (−1 · 0)))) = SCBD , by geometric simplifications

(4) SABC = SCBD , by algebraic simplifications

(5) SABC = (SCBC + (1 · (SCBB + (−1 · SCBA)))) , by Lemma 29 (point D eliminated)

(6) SABC = (0 + (1 · (0 + (−1 · (−1 · SABC))))) , by geometric simplifications

(7) 0 = 0 , by algebraic simplifications

Q.E.D.

Fig. 2. Proof of the critical property for example 5.1

point A 20 10
point B 40 25
point C 70 15
point D 90 30

line p A C
line q B D

drawline A B
drawline C D
cmark_lt A
cmark_lt B
cmark_lt C
cmark_lt D

intersec X p q

Fig. 3. GCLC code for example with parallel lines and the point D given by Cartesian
coordinates

Deduction check invoked: the property that led to the error will
be tested for validity.

The conjecture not proved - the critical property does not
always hold.
The prover output is written in the file error-proof.tex.

5.3 Example 3

Consider a more elaborate example (see Figure 4): let O1 and O2 be the pair-
wise intersections of the side-bisectors of triangle ABC. These two points are
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point A 30 10

point B 70 10

point C 60 45

med a B C

med b A C

med c B A

intersec O_1 a b

intersec O_2 a c

drawsegment A B

drawsegment A C

drawsegment B C

cmark_b A

cmark_b B

cmark_t C

cmark_lb O_1

cmark_rb O_2

line p O_1 O_2

A B

C

O1 O2

Fig. 4. GCLC code and the corresponding illustration for the example with two iden-
tical points

always identical, so the construction of a line p determined by these two points
is not possible. When the system encounters this construction step, it invokes
the prover which successfully proves that this step is always illegal.

point A 20 25

point O 60 25

point X 60 40

circle k O X

midpoint M O A

circle l M A

intersec2 T_1 T_2 k l

line t A T_2

intersec2 P_1 P_2 k t

cmark_t A

cmark_t O

cmark_lb T_2

drawcircle k

drawline t

line p P_1 P_2

A O

T2

Fig. 5. GCLC code and the corresponding illustration for the example with tangent



Automatic Verification of Regular Constructions 49

5.4 Example 4

In the example shown in Figure 5, line t contains point A and is the tangent
to circle k. The constructions is as follows: let k be the circle with centre O
passing through the point X ; let M be the midpoint of the segment OA; let
l be the circle with centre M and passing through the point A; let T1 and T2

be the intersection points of the circles k and l. Since T2 belongs to l, it holds
that the angle AT2O is a right angle. Since T2 belongs to k, it follows that T2

belongs to the tangent from A to k. Let us denote by t the tangent AT2 from
A to k. Since t is a tangent, its two intersection points with k, P1 and P2, are
identical. Therefore, P1 and P2 do not determine a line, which is relevant for the
construction step line p P 1 P 2. This is detected by the main construction
module (for the given, specific points), but the prover fails to prove it (because
of the realm of the area method, see Section 4).

6 Further Work

Our verification system checks if a construction is illegal, i.e., if it is always impos-
sible (no matter how the starting points were selected). While the construction
(with its Cartesian counterpart) is being performed, the verification system is
invoked, when and if, for a given set of fixed points, a construction step can-
not be performed. We can extend our system so it can also invoke deduction
checks for all construction steps even if there is no semantic error encountered.
This would give verified regular constructions — constructions that can always
be performed (provided the fixed points meet some conditions). However, such
system would be time consuming (as it would run the theorem prover for each
construction step).

We are planning to further improve the underlying deducting module, and to
implement other geometry theorem provers, covering constructions that are out
of the realm of the current system.

Also, we are planning to develop a support for guided step-by-step construc-
tions. Such a tutoring system would control each user step, both in syntax,
semantics, and deductive terms, and would serve as a teaching assistant for
studying geometry.

7 Conclusions

In this paper, we presented our system for automatic verification of construc-
tions. It provides a deep argument why a certain construction is not regular
and it gives a new power to dynamic geometry tools. The system is used within
dynamic geometry tools GCLC and Eukleides, and in the wider context of our
publicly available geometric framework GeoThms. The underlying deduction
module is based on the area method for Euclidean geometry. For future work,
we are planning to implement some other geometry prover, and to further extend
the realm of our system. We are also planning to extend the system so it can be
used as a tutor for studying geometry.
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Abstract. We propose an algorithm for automated recognition of com-
putationally constructed curves and discuss several aspects of the recog-
nition problem. Recognizing loci means determining a single implicit
polynomial equation and geometric invariants, characterizing an alge-
braic curve which is given by a discrete set of sample points. Starting with
these discrete samples, arising for example from a geometric ruler and
compass construction, an eigenvalue analysis of a matrix derived from
the data leads to proposed curve parameters. Utilizing the construction
itself, with its free and dependent geometric elements, further specifi-
cations of the type of constructed curves under genericity assumptions
are made. This is done by a second eigenvalue analysis of parameters of
several generically generated curves.

1 Introduction

The generation of loci is one of the central applications in todays computer
geometry programs. In abstract terms a locus consists of all locations that a
specific point of a geometric configuration can take, while one parameter of the
configuration may vary. For instance the locus of all points that are at a fixed
distance from a fixed point is simply a circle. Typically the locus data generated
by a geometry program does not consist of a symbolic description of the locus.
Rather than that a more or less dense collection of sample points on the locus is
generated. In many cases the user of such a program can identify the underlying
curve visually by simply looking at it or by a pre-knowledge of the underlying
construction or by a combination of both. However, for several applications (like
automatic assistance, geometric expert systems, etc.) it is highly desirable to
recognize these curves automatically. After a geometric construction for a locus
is specified such a recognition procedure can be carried out on two different
levels. First, one is interested in which locus is generated for a concrete instance
(i.e. position of free elements) of the construction. Second, one is interested in
invariants of all the loci that can be generated by a specific construction. We
refer to this set as the type of the locus. Very often in the literature types of

F. Botana and T. Recio (Eds.): ADG 2006, LNAI 4869, pp. 52–67, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Limaçon Trochoid

Watt curve Asteroid

Fig. 1. Geometric constructions of loci; each curve can be interpreted as zero set of an
algebraic equation

loci (which are algebraic curves in our setup) are closely related to names of the
corresponding curves like cardioide, limaçon, lemniscate, Watt curve, conic, etc.
One of the ultimate goals of a locus recognition algorithm would be an output
like:

“You constructed a limaçon with parameters r = 0.54 and s = 0.72. A
limaçon is given by the equation (x2 + y2 − 2rx)2 = s2(x2 + y2). Your
construction will generically generate a limaçon.”

If one treats the geometric construction as a black box which takes positions of
the free elements of a construction as input and produces sample points of the
generated locus as output, the above demands imply the necessity of a curve
recognition algorithm based on discrete sets of sample points.

In our constructions we only allow primitive operations coming from ruler
and compass operations. In this case a locus turns out to be contained in a zero
set of a polynomial equation for any specific instance of a construction. Fixing
the free construction elements in a way that only one degree of freedom is left,
a dependent point is restricted to an algebraic curve. The locus data is given
by a discrete set of sample points P on this curve, constructed for example via
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a dynamic geometry program. In general, these programs trace a single point
and thus return a set P contained in a single real branch of the zero set of an
algebraic equation. Therefore we presume P to be of that kind.

In our case, curve recognition for a specific instance of a construction means
extracting a single algebraic equation of minimal degree from a discrete point set
P and determining its degree. In a second step we focus on the set B of curves
obtainable by all instances of a specific construction – the type of the curve.
We presume that all coordinates of dependent elements in a construction are
analytic functions in the free parameters of the free elements of a construction.
Under this assumption, an examination of the degree of the curves in B and
geometric invariant extraction is possible. In this way we can, at least for simple
curves, associate a name with B, characterizing the type of the contained curves.
In particular the minimal degree itself turns out to be an invariant property.

Recognizing implicit multivariate polynomials has been investigated also by
other research groups most often in different contexts and with different side
constraints. A genuine feature of the setup treated in this article is that the
sample points usually come with a high arithmetic precision and that it is known
in advance that they belong to an algebraic curve with an a priori upper degree
bound (usually the real degree will be much lower than this bound). This is
in contrast to related research work in computer vision or patter recognition
where one is interested to approximate camera pictures of geometric shapes by
algebraic curves in order to recognize these shapes. There the shape data does
not a priori belong to an algebraic curve and one is only interested in relatively
roughly approximating curves of fixed degree (compare for instance [6],[9],[10]).

Another related setup was treated and implemented in the dynamic geometry
program Cabri Géomètre [3]. There a first locus recognition algorithm was imple-
mented. Unfortunately no algorithmic details are available and practical experi-
ments show that the algorithm used there is relatively instable in particular under
rigid transformations. (We will deal with this particular issue later in Section 5.2).

In this article we introduce a concept of locus recognition, that deals with
the construction on two different levels. On both levels the construction itself
is treated as a black box that generates sample points on the locus for specific
parameters of the free elements of the construction. In the first step we propose
an algorithm that takes the sample points of one locus as sole input data and
reconstructs the parameters and degree of the underlying algebraic curve for
this specific instance. In a second step we allow the free construction elements
to vary and thus produce a whole collection of sample point sets P1, P2, . . . each
of which represents locus data of the same type. Randomization techniques are
then used to finally extract common features of these loci and determine the
type of the locus (with high probability).

2 Computationally Constructed Curves

We use ruler and compass constructions as starting point for our investigations.
They provide us with locus data of high arithmetic precision. In principle it does
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not matter where discrete sample point sets come from, as long as they are very
close to an algebraic curve.

Dynamic geometry programs facilitate ruler and compass constructions in a
plane: Elementary construction steps consist of placing free points in the plane,
joining two points by a line, constructing circles by midpoint and perimeter and
intersecting lines with lines, lines with circles or circles with circles. Furthermore,
points can be restricted to already constructed elements like a line or a circle.
We will call such points semi-free as they have only one degree of freedom. Lines
(circles) are zero sets of linear (quadratic) equations and can be computation-
ally represented by the parameters of these equations. Semi-free points can be
described by a one-parametric solution manifold of an equation. All-in-all (for
details see [1]) any instance of a geometric construction corresponds to the so-
lution set of a finite set of polynomial equations in the parameters generated
by the free and semi-free elements. Allowing only finitely many ruler and com-
pass construction steps, every position of a dependent point can be described by
algebraic equations depending on the position of the free points.

While moving a free point in a dynamic geometry program, one can watch
the dependent points move consistently with the construction. Fixing all (semi-)
free elements except for one semi-free point in a construction, a single dependent
point p gets restricted to a zero set of an algebraic equation. Tracing p with a
dynamic geometry program under the movement of a single semi-free point (a
mover), a single branch B of an algebraic curve is revealed. The algebraic curve
can be described by a polynomial equation b(p) = 0 of minimal degree. B is the
set of locations of the traced point p. Unless otherwise stated all points and curves
are assumed to be given in homogeneous coordinates. Under these assumptions
a constructed branch B is contained in the zero set Z(b) of a homogeneous
polynomial function b : RP

2 → R of minimal degree db:

Z(b) =

⎧
⎨

⎩

⎛

⎝
x1

x2

x3

⎞

⎠ ∈ RP
2

∣
∣
∣
∣
∣
∣
b(x1, x2, x3) =

∑

i+j+k=db

βi,j,k · xi
1x

j
2x

k
3 = 0

⎫
⎬

⎭
(1)

From a construction in a dynamic geometry program we get a discrete set
P containing points lying almost exactly on a branch B of some Z(b). Using
algebraic methods, we could in principle determine a corresponding curve of
very high degree by the following approach: In a first step each elementary
construction step is described as a polynomial relation in the coordinates of
geometric elements. In a second step elimination techniques (for instance based
on Gröbner Bases or Ritt’s algebraic decomposition method) are used to find
an implicit representation of the possible position of the locus generating point.
These type of approach to curve recognition is purely symbolic but it significantly
suffers from combinatorial explosion of the algebraic structures. Even for small
constructions one could in general not hope for results in reasonable computation
time. In contrast we use the construction as a “black box” and consider only the
sample point data of the computationally constructed branch B. Our aim is to
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derive its describing algebraic equation b of minimal degree. Now our driving
questions are:

1. Which plane algebraic curve of minimal degree is ”reasonably” fitting the
numerical locus data? (Which b fits P ”reasonably” and what is db?)

2. Regarding a ruler and compass construction, which type of plane algebraic
curves are constructed? (What is the degree db of almost all curves B in B
and what name characterizes B?)

Clearly the problem needs some mathematic modeling which preserves quality
criteria. The next section will deal with this issue. Additionally the first part of
our work, i.e. the parameter extraction, can be applied to any curve or even
surface recognition problem given sufficiently many points of sufficiently high
precession.

3 Curve Recognition

Given a finite set of data points P = {p1, p2, ..., pm}, e.g. a set of samples in
homogeneous coordinates on a locus from a ruler and compass construction.
The problem of fitting an algebraic curve B to the data set P is usually cast as
minimizing the mean square distance

1
m

m∑

i=1

dist(pi, Z(b))2 (2)

from the data points to the curve (see [5]). This is a function in the coefficients
β of the polynomial b, where dist(p, Z(b)) denotes the Euclidean distance from
a point p to the zero set Z(b).

Unfortunately, there is in general no closed form for dist. In principle dist
could be approximated by iterative calculations. However, they turn out to be
expensive and very clumsy for the needed optimization procedure. Therefore
we will use other approximation. Without any numerical noise b(p) = 0 for all
p ∈ Z(b) the first choice to replace (2) is

1
m

m∑

i=1

b(pi)2. (3)

We will use this formula as central ansatz for modeling the distance of curve
and sample points. This is adequate since our sample points are given with high
arithmetic precision.

We now will describe how the coefficients of b that minimize (3) can be cal-
culated. For this let T1(x), T2(x), ..., Tk(x) be a basis of the linear space of all
homogeneous polynomials of degree d in three variables. If d = 2 one could take,
for instance, the monomial basis

T1(x) = x2
1, T2(x) = x1x2, T3(x) = x1x3, T4(x) = x2

2, T5(x) = x2x3, T6(x) = x2
3.
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In general we have k = 1
2 (d + 1)(d + 2) basis polynomials. Furthermore let

τd = (T1, T2, . . . , Tk) : RP
2 → R

k

be the function that associates a point p ∈ RP
2 with its evaluation τd(p) ∈ R

k

of all the basis functions of degree d.
Assuming we have a discrete set of n points P = {p1, . . . , pn} from an under-

lying construction and assuming we know db, the degree of the computationally
constructed branch B, we can fix τd for polynomials of degree db. Furthermore,
we can form an n×k matrix P := Pd,P with row vectors τd(pi) of τd-transformed
points pi ∈ P . Thus minimizing (3) is equivalent to minimizing ‖Pβ‖2, with the
unknown parameter vector β. So far the minimum can easily be obtained by
setting β = (0, . . . , 0). This comes from the homogenhomogeneityicity of the
problem setup and the fact that β and λ ·β for λ ∈ R\{0} define the same curve.
We overcome this problem by forcing additional side-constraints on β and require
‖β‖2 = 1. In relation to our ansatz (3) this side constraint has two advantages:
First of all it is geometrically reasonable, since it ensures a bound on each co-
efficient of the polynomial. Second, it leads to a nicely solvable minimization
problem. All in all curve recognition in our case is stated as

min
‖β‖2=1

‖Pβ‖2 (4)

The above minimization problem leads to a nicely structured Eigenvector-
Eigenvalue analysis as the following considerations show. We have

min
‖β‖2=1

‖Pβ‖2 = min
‖β‖2=1

√
βT PT Pβ,

which is minimized by an eigenvector of PT P corresponding to an eigenvalue
λ of minimal absolute value. The minimum itself is this very eigenvalue λ. In
terms of a singular value decomposition of P , λ is no more than a singular value
of P of minimal absolute value and (4) is minimized by a corresponding right
singular vector of P .

Proof: PT P is symmetric and features an orthogonal diagonalization employ-
ing eigenvectors. Thus ∃Q ∈ O(k) : QT PT PQ = Λ with a diagonal matrix
Λ = diag(λ1, λ2, ..., λk) exhibiting the eigenvalues λi (1 ≤ i ≤ k) of PT P . The
j-th column of Q is the eigenvector corresponding to the j-th diagonal entry of
Λ. Abbreviating QT β by γ, we get:

min
‖β‖2=1

‖Pβ‖2 = min
‖γ‖2=1

√
γT Λγ.

Let λj be an eigenvalue of minimal absolute value |λj | = min{|λj | | 1 ≤ j ≤ k}
and let eT

j = (0, ..., 0, 1, 0, ..., 0) be the j-th canonical basis vector. Then

min
‖γ‖2=1

√
γT Λγ =

√
eT

j Λej =
√

λj .
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By undoing the transformation from β to γ = ej , we get βT = (q1,j , q2,j , ..., qk,j),
the j-th eigenvector of PT P . If the minimal absolute eigenvalue is a single eigen-
value, then we get a unique eigenvector minimizing eigenvector β. If not, then
β may be any vector in the span of all eigenvectors to the eigenvalues with an
absolute value of λj . Since a singular value of P is the root of an eigenvalue of
PT P , the right singular vector corresponds to the eigenvectors from above. �
In practice with large P the minimal absolute eigenvalue of PT P will always
be unique. In cases, where P does not specify a singe curve and a hole bunch
of curves could have P as sample point set, we can not expect an algorithm to
always return the correct curve.

Let us assume having the sample points on a branch B of a yet unknown
degree db in a no-numerical-noise environment. If we choose an arbitrary testing
degree d ∈ N\{0} and examine the behavior of P and (4), we have the following
cases:

d = db : As we investigate in homogeneous polynomials, the length of the pa-
rameter vector β is kd = 1

2 (d+1)(d+2), but the corresponding curve is deter-
mined by kd − 1 points in general position. Per assumption, P contains this
many points in general position and thus rank(P ) = kd − 1 = rank(PT P )
and PT P has a single vanishing eigenvalue λ = 0. The corresponding eigen-
vector is the desired parameter vector of the curve.

d < db : An analysis of the corresponding P yields: P is of maximal rank and
PT P has no vanishing eigenvalue.

d > db : Let d = db + r for some r ∈ N. An analogous observation shows that
PT P has kr = 1

2 (r + 1)(r + 2) vanishing eigenvalues. This is a reasonable
behavior because it shows that the resulting curves are degenerate: One
component is the curve of degree db fixed by P and the other component is
a more or less random curve of degree r.

This shows that for a given P the product PT P has a vanishing eigenvalue
λ = 0 if and only if the testing degree is greater than or equals to db. Thus
for constructed curves, we can compute the eigenvalues λ of PT P of minimal
absolute value for testing degrees d = 1, d = 2, ..., successively. This leads to a
point where λ is zero. At that point we reached the desired degree.

In practice, where the sample points are disturbed by a small numerical noise,
we will not observe vanishing eigenvalues but a significant drop (usually a few
orders of magnitude) of the absolute minimal eigenvalues (see section 5). Thus
we are able to say:

“You constructed a curve of degree db.”

4 Type of Constructed Loci

Let B be the whole continuum of constructed branches B and let dB denote
the maximum of all degrees db of constructed curves B contained in B. Since
we deal with finite constructions, dB is bounded. P is a discrete set of points
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originating from discrete positions of a semi-free mover of a construction. In the
last section we have seen that PT P becoming (nearly) singular indicates that
the degree of a curve is equal to or below a certain value. Due to the analyticity
(omitting the details here1) almost any curve contained in B is of degree dB.
Therefore we can select a generic parameter set in the parameter space of a
specific construction and get a generic curve B. The degree db of B equals dB
with probability one. This means, we can detect dB and prompt the user of a
dynamic geometry program:

“You constructed a curve of degree db. Your construction will generically
generate a curve of degree dB.”

To further specify B with associated degree dB, we can calculate invariants
with respect to either projective, affine or Euclidean transformations. If all
curves that belong to a given construction show the same invariants stored in a
database, a name like circles, conchoids or limaçon can be associated with B.

One possibility to achieve this is to examine the orthogonal space B⊥. This is
the space of all kdB = 1

2 (dB + 2)(dB + 1) dimensional vectors orthogonal to any
coefficient vector of any curve in B. Therefore B⊥ is an invariant of the underlying
construction. Generating a matrix V containing at least kdB parameter vectors
to generic curves of B, B⊥ is the null space of V . It can be determined by an
eigenvalue/eigenvector analysis: B⊥ is spanned by the eigenvectors of V T V to
eigenvalues equal to zero.

The remaining task for a graduation of B would be to correlate the calculated
orthogonal space with a database and retrieve a corresponding name. Then we
can say something like:

“Your construction will generically generate a circle.”

The idea of how to avoid costly calculations of B⊥ is to simply look up some
orthogonal spaces for curve classes of degree dB in a database and perform a
multiplication with V . Getting a zero result we know B to be a subset of all
curves with the orthogonal space taken.

As a simple example let dB = 2 and let B be a set of circles. We assume that
all coefficient calculations are performed with the monomial basis for quadrics
(see example after equation (3)). Looking in a database for orthogonal spaces to
curve types of degree two, we will find circles with an associated orthogonal space
B⊥ = span((1, 0, 0, −1, 0, 0), (0, 1, 0, 0, 0, 0)) =: span(o1, o2), because circles are
characterized by the following properties properties

1. the coefficient of x2 equals the coefficient of y2:
(1, 0, 0, −1, 0, 0) · τ2(x, y, z) = x2 − y2 = 0, ∀(x, y, z) on a circle.

2. the coefficient of xy equals zero:
(0, 1, 0, 0, 0, 0) · τ2(x, y, z) = xy = 0, ∀(x, y, z) on a circle.

If in fact all members of B are circles, V · o1 and V · o2 are zero or almost zero
due to numerical effects.
1 See [1] for an in-depth analysis.
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Fig. 2. Raw data of a degree-four-curve

To specify a more complex B, a linear test like matrix multiplication may not
suffice. It has to be tested wether potentially non-linear expressions hold for kdB

generic curves out of B. Additional difficulties arise when B is tested to be a
subset of a parametrized class, like the class of conchoids2. Here, research is in
progress to unify and simplify the tests of type affiliations. Focusing on Euclidean
graduation, a promising approach seems to be to calculate an intrinsic rotation
invariant center of a curve using all curve parameters as introduced in [7]. Then
mapping B to a class of curves in a database by transformations is reduced to
comparing invariants under rotations and scaling.

5 Experimental Results

Constructing a curve C in a dynamic geometry program and applying a curve
recognition algorithm based on minimizing (4) yields some curve parameters.
This corresponding curve should fit the sample data if the corresponding eigen-
value is significantly small. We present some data of numerical experiments with
loci whose sample points have been calculated with the program Cinderella [4].

5.1 Finding the Degree

We start with the example of a limaçon corresponding to the first picture in
Figure 1. The corresponding sample data P of the locus corresponds to the
cloud of points given in Figure 2. The numerical precision of the data is approx-
imately 14 digits. The Euclidean coordinates of points p ∈ P range from −10
to 10. Figure 3. shows a sequence of plots for the estimated curves of degree
d = 2, . . . , 6. The smallest absolute values of eigenvalues λd in these five situ-
ations are given below the pictures. The sample points are given for reference.
One observes a significant drop of the eigenvalues from d = 3 to d = 4. The
2 A conchoid symmetric to the x-axis and with the singularity in the Euclidean origin

can be written as b(x, y, z) = (x −σ)2(x2 + y2)− ρ2x2 = 0 for some parameters σ, ρ.
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Fig. 3. Estimated curves for degrees 2, 3, 4, 5 and 6 with logarithmic plot of the minimal
eigenvalues against the tested degrees and threshold-line corresponding to λ = 10−14

picture in the bottom right shows the logarithm of the minimal eigenvalues with
a threshold-line at ln(λ) = ln(10−14) marked vertically against the tested degree
d ∈ {2, 3, 4, 5, 6}. Moreover for d = 5 we obtain (as expected) three absolute
eigenvalues below λ = 10−14 and for d = 6 we obtain six absolute eigenvalues
below 10−14. The next larger absolute eigenvalues are around 10−6. This sug-
gests that the curve under investigation is of degree d = 4. For the degree five
approximation the plot unveils an additional component of degree one. And for
degree six an additional component of degree two shows up.

As a second example we examine a parametrizable Epicycloid

f(t) =
(

r · cos(k · t) − s · cos(l · t)
−r · sin(k · t) − s · sin(l · t)

)

. (5)

If we choose r = 2.4, s = 3, k = 2 and l = 5 we get samples depending on
the range and sampling rate for t. Three instances of sample point sets are
shown in Figure 4. In the top row t ∈ [0; 2π), in the middle row t ∈ [0; 40π)
and in the bottom row t ∈ [0, 10π). In any case 72 equidistant values are used.
Thus we have an ordered sequence of sample points given by our parametriza-
tion. In dynamic geometry programs ordered samples can be calculated even if
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Epicycloid samples Connected data Recognized curve

Epicycloid samples Connected data Recognized curve

Epicycloid samples Connected data Recognized curve

Fig. 4. Recognition of Epicycloids (5)

the constructed curve is not rationally parametrizable3. A good idea of what the
curve belonging to the data looks like can be provided by connecting the ordered
samples linearly. The middle column of Figure 4 shows these line segments. In
the case of t ∈ [0; 40π) in the second row, the sampling rate is too low to
show the curve itself but the picture gives a good impression of the contour. In
case where the data is not scattered along the curve but locally concentrated,
more intuition is needed when looking at the connected data. In either case our
algorithm detects the correct curve of degree ten (ignoring roundoff errors).

As a further example, we take a Epicycloid of degree six with parameters r = 1,
s = 6, k = 12 and l = 4. The top left image of Figure 5 shows it, correctly recog-
nized by our algorithm.The correspondingminimal eigenvalue is sufficiently small,
i.e. below the dashed threshold. The logarithmic plot of the minimal eigenvalues

3 More precisely a curve can be parametrized by rational functions if it comes from a
construction that uses exclusively ruler constructions. Constructions use ruler and
compass may lead to more general (still algebraic curves).
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Fig. 5. Recognition of Epicycloids (5)

against the tested degree in the subsequent middle picture reveals another signif-
icant eigenvalue-drop. It suggests that the curve looks quite like a curve of degree
four. There is in fact such a curve of degree d = 4, approximating the sample
points very good. It can be seen in the rightmost picture in the top row of Figure 5.
We could have guessed this only by looking at the parameter vector of the cor-
rectly recognized curve: All parameters corresponding to the xi

1x
j
2x

k
3-terms with

i+ j ∈ {5, 6} are very small or vanish totally (x3 is the coordinate for homogeniza-
tion). This curve of degree four can be discarded because of a (second) significant
drop in the minimal eigenvalues when switching to a testing degree of six. An ac-
ceptable threshold, e.g. 10−14, may be chosen to tell these curves apart. By altering
the Epicycloid’s parameter r to r = 0.4, (5) still provides us with a Epicycloid of
degree six. In this case there is only one significant drop in the minimal eigenvalues.
λ4 is already in the range of roundoff errors. Thus our presented algorithm falsely
assumes that the data belongs to a curve of degree four instead of six.

Our algorithm makes a false degree guess more often for curves of relatively
high degree. The may be recognized as curves of lower degree. Usually in most of
these cases the approximation by the low degree curve is so good that it visually
fits the sample data extremely well. The situation is qualitatively the same as
with the Epicycloid in Figure 5. For the example in the top row of the sample
data is already very nicely approximated by an algebraic curve of degree 4.

In general one can observe that the absolute value of the smaller eigenvalue
becomes smaller the higher the degree gets. Let us take for example the Epicy-
cloid with a degree of 28 from Figure 6. It has the parameters r = 1.4, s = 5,
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Fig. 6. Problematic recognition of an Epicycloid of degree 14 and structural decreasing
eigenvalues

k = 14 and l = 1 and it comes up with a decreasing minimal eigenvalue the
higher the selected tested degree is. This is not only the case with Epicycloids
but with any curve. The minimal eigenvalues stop decreasing once they reach
the region of roundoff errors. A reason for this behavior is in the structure of
the matrix P . P is used to determine the degree in the minimization (4). It is
built up rowwise by τd(p) with p being a sample point. Thus the columns of
P consist of values xiyjzk, where x, y and z are the coordinates of a sample
point. Since the number of free parameters grows quadratically with the degree
d curves of higher degree can simply approximates a set of sample points much
better. We did not analyze this effect qualitatively but experimental results
exploit a roughly exponential behavior. For this we we took a sample set of 300
random points within the range of −4 and 4 for x and y. With probability one
these points will not be contained in a curve of degree 20 or lower. We can do
this a hundred times and thereby calculate the mean minimal eigenvalues for
our testing degrees. The resulting diminishing eigenvalues due to our matrix
structure is shown in a logarithmic plot in the bottom left of Figure 6. In this
logarithmic scale it is almost linear. The next picture (middle of lower row)
compares this generic effect with the behavior for the Epicycloid. We see that at
least part of the systematic eigenvalue fall can be explained by this generic effect.
Knowing the structural diminution approximately, we can introduce a correction
term in our calculations. The bottom right plot of Figure 6 reflects the outcome.
This means that in case of our Epicycloid we have small eigenvalues for high
testing degrees but not a single significant drop in the eigenvalues. The fact that
λ12 in itself is lower than our chosen threshold is no indicator that a curve and
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pi �→ pi + (10, 10) pi �→ pi + (30, 30) pi �→ (pi + (30, 30)) · 0.01

Fig. 7. Experiments with shifted sample data for shifts (10, 10), (30, 30) and a shift
(30, 30) followed by scaling

the correct degree was found. If we would accept the curve at the testing degree
d = 12, we would get the curve shown in the right of Figure 6. It is obviously
not a good approximation to the sample points. In relation to the structural
diminution, the minimal eigenvalues of the Epicycloid decrease even more. We
interpret this as follows: The higher the testing degree gets, the better the data
may be approximated. The increasing values in the corrected plot are due to
roundoff errors.

5.2 Shifting and Preconditioning

Our method as presented here has one significant drawback: It is very sensi-
tive to the location of the sample points. This is due to the following effect. If,
for instance, in our example we shift the Euclidean sample points by a vector
(100, 100), then the corresponding parameters in τd(pi) exhibit very high param-
eter values since the shifts are amplified by the large exponents in the polynomial
bases. This results in the fact that our matrix P becomes more and more nu-
merically ill-conditioned when the sample points are far away from the origin.
The first two pictures of Figure 4 show how the estimated curve becomes more
and more inaccurate the further away all sample points are form the origin.

So far we do not have a unified method to attack these numerical problems how-
ever we have several reasonable heuristics that work fine in practice. As a first step
one could a priory investigate the data and translate it so that it is not too far away
from the origin. One could also scale the data. After calculating the parameter vec-
tor this vector has to be transformed correctly to match the original data points
again. We call this process preconditioning. The third picture of Figure 7 demon-
strates the result of this method. There the data points have first been translated
by a vector (30, 30). This would normally result in a very badly conditioned matrix
and the estimated curve would be far off the sample points (see middle picture).
However now the whole data set is scaled by a factor of 0.01 which again moves
the data points close to the origin. The last picture shows that after this precon-
ditioning the estimated curve nicely matches the sample data again.
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A more subtle method to attack numerical instabilities can be achieved by
using topological curve invariants. In our example the middle picture could never
stem from a locus generated by a dynamic geometry program: The curve obvi-
ously breaks up in (at least) two branches and P contains points on different
branches. This is also true for the wrongly recognized Epicycloid of Figure 6.
Using, for example, a Bernstein Basis (with respect to the appropriate bounded
domain in each case) for representing and dealing with the involved polynomials
could help to improve the conditioning problem, too.

5.3 Investigating Curve Invariants

The parameter vector of the curve is the eigenvector that corresponds to the
smallest absolute eigenvalue. A search for curve invariants as proposed in Sec-
tion 4 would require the generation of many instances of similar curves and the
calculation of the orthogonal space. The orthogonal space would hint to specific
dependencies on the curve’s parameters. However, very often such dependencies
also are indicated if one investigates only in one such parameter vector. In our
example of Figure 2 after multiplying by a suitable factor the eigenvector of the
degree four approximation takes the following form (four digits after the decimal
point are shown):

β =( 1.0, −9.4034 · 10−8, 2.0, −8.8127 · 10−8, 1.0, −28.08, −0.55999, −28.08,
−0.55999, 237.3311, 7.8623, 40.2880, −423.9761, 66.5167, −1396.3979)

Looking at these values one may suspect that the curve has the characteristic
properties

β2 = β4 = 0, 2β1 = β3 = 2β5, β6 = β8, β7 = β9.

In fact, comparing these conjectures with the coefficients of a generic limaçon
generated by a computer algebra system shows that the above relations indeed
hold for the general case. Using techniques like the PSLQ algorithm [8] that is
able to “guess” integral relations between real numbers one could also use a single
eigenvector to derive many more reasonable conjectures about the underlying
curve type. Further research in this direction is in progress.

6 Conclusions

With a given set of points P representing an algebraic curve approximately, we
can determine the curve’s coefficients by computing eigenvalues and eigenvectors
only. This article presented the first steps along this road. Still there are many open
questions and problems to attack. The main research problems currently are:

• What are good ways of preconditioning?
• How to deal with curve types that depend on parameters?
• How to derive geometric transformations that map a curve to a kind of

standard representation?
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• How can one derive a reliable measure for the quality of the result?
• To what extent can randomization techniques be used to speed up the cal-

culations?
• How to use topological curve characteristics to restrict the search space of

potential curves?
• Can similar approaches be used within the more special class of rational

algebraic functions?
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Abstract. This paper describes the recent convergence of four topics:
polynomial systems, flexibility of three dimensional objects, computa-
tional chemistry, and computer algebra. We discuss a way to solve sys-
tems of polynomial equations with resultants. Using ideas of Bricard, we
find a system of polynomial equations that models a configuration of
quadrilaterals that is equivalent to some three dimensional structures.
These structures are of interest in computational chemistry, as they rep-
resent molecules. We then describe an algorithm that examines the re-
sultant and determines ways that the structure can be flexible.

1 Introduction

This project results from the recent convergence of four topics: systems of polyno-
mial equations, flexibility of three dimensional objects, computational chemistry,
and computer algebra.

Protein folding has been a major research topic in computational chemistry
for a number of years [9]. Proteins are long molecular chains. Proteins form as
flexible chains but they quickly fold into shapes that are rigidified by the for-
mation of additional bonds. However, they retain flexibility in certain regions,
which is essential for performing their various functions [25]. As macromolecules,
composed of relatively heavy atoms (Carbon, Oxygen, Nitrogen, etc.) their con-
formational problem is modeled in terms of frameworks, i.e., systems of ideal
points (atoms) connected by rigid rods (molecular bonds), with fixed angles
(the bond angles, determined by molecular orbitals) but flexible torsions (the
solid angles formed by successive bonded quartets) [13]. Simple examples are
easily built using plastic balls and sticks.

In 1812, Cauchy considered flexibility of three dimensional polyhedra (think
of a geodesic dome) where each joint can pivot or hinge. He proved that a convex
polyhedron with invariant facets must be rigid [4]. Bricard [2], in response to
a question posed in 1895 by C. Stephanos [24], gave the geometric conditions
under which an octahedron may be flexible. The Bricard octahedra, however,
besides being non-convex are also non-embeddable in 3-dimensional space as
they possess intercrossing facets. A genuine, embeddable, flexible polyhedron
with rigid facets was found by Connelly in 1978 [5], and soon models appeared
of a simple flexible structure [8]. It is very enlightening to hold one of these and
feel it move.

F. Botana and T. Recio (Eds.): ADG 2006, LNAI 4869, pp. 68–79, 2007.
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As the facets are triangular, they are rigid – unlike quadrilaterals which are
inherently flexible; think for example of a cube as compared to a tetrahedron.
Thus the deformability is seen in terms of changes of the dihedrals formed by
these facets about the edges of the polyhedron. Since the underlying description
is in terms of quadratic distance constraints, expressing the conformational prob-
lem of the polyhedron in terms of cosines and sines (or half-tangents) of these
dihedral angles results in systems of polynomial equations, quadratic in each of
these variables, and in which the edge lengths enter as parameters. A polyhedron
composed of triangular facets is subject to enough such constraints that accord-
ing to classical results on rigidity that date back to Lagrange [12] and Maxwell
[19] it should be rigid – generically at least! The polynomial system describing
these conformations must therefore generically possess a discrete solution set.
However, when conditions for flexibility are met, the solution set must acquire
components of nonzero dimensionality (so called continuous components). Thus,
the problem of detecting flexibility amounts to being able to identify conditions
in the parameters for which a system of n polynomials in n variables drops in
rank [23].

Here we present a new approach to understanding flexibility, using resultants
and symbolic computation. The geometry of the object or molecule is described
by a set of multivariate polynomial equations. Solving a system of multivariate
polynomial equations is a classic, difficult problem. The approach via resultants
was pioneered by Bezout [1], Dixon [10], and others. The resultant res appears as
a factor of the determinant det of a matrix containing multivariate polynomials.
But often det is too large to compute or factor, even though res is relatively
small. We will describe a heuristic that overcomes the problem here, and in other
cases [16]. Once we have the resultant, we describe an algorithm that examines
the resultant and determines ways that the structure can be flexible. We discover
in this way the conditions of flexibility for an arrangement of quadrilaterals in
[2]. This system was posed by Bricard as an easily realizable, mathematically
equivalent alternative to his flexible octahedra.

All computations below were done with Lewis’s computer algebra system
Fermat [14], which excels as polynomial and matrix computations [20]. We used
a 1.8 ghz Macintosh G5, with 2 gigabytes of RAM, new in 2003.

2 Accelerating the Dixon Resultant

The Dixon Resultant method [10], following an idea of Bezout [1] and modified
by Kapur et. al. [11], is presented in [11], [3], and [17]. Given a system of n
polynomial equations

fi(x1, x2, x3, . . . , a, b, . . .) = 0, i = 1, . . . , n

in n − 1 variables xi and a number of parameters a, b, . . ., the method computes
its resultant, i.e. a single polynomial in the parameters encapsulating the solution
(common zero) to the system. A common variation is to have n equations in n
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variables. Then one of them, say x1, is considered a parameter to bring this into
the previous form. In either case, the other variables have been eliminated.

In this paper all polynomials have coefficients in the ring of integers Z and
the solutions are in the field C of complex numbers. All computations are exact.

The basic Bezout-Dixon idea is to construct a square matrix M whose deter-
minant det �= 0 is a multiple of the resultant. The factors of det that are not the
resultant are called the spurious factors, and their product is sometimes called
the spurious factor.

The naive way to proceed is to compute det, factor it, and separate the spuri-
ous factor from the actual resultant. Deciding what is spurious and what is the
resultant is not always simple. However, when the original problem is based on
geometry (as is the present problem) and one knows that the solution set is dis-
crete, the resultant must involve all the parameters. (Otherwise, one parameter
could have arbitrary values without affecting the variables. This will not occur
in any realistic problem.) Typically, many factors of det do not involve all the
parameters. Also, it is usually easy to simply plug in a known numerical solution
and see which factor it satisfies. (The Dixon method is not guaranteed to work
if the solution set is infinite; see [3]).

A graver problem is that the determinant may be so large as to be impractical
or even impossible to compute, even though the resultant is relatively small; the
spurious factor is huge. Further, the determinant may be so large that factoring
it is impractical.

To overcome these problems, Lewis has developed several heuristic methods
[16]. A method called EDF, Early Discovery of Factors, makes use of the existence
of spurious factors. We reproduce it here for the convenience of the reader. By
elementary row and column manipulations (Gaussian elimination), it discovers
probable factors of det and plucks them out of M0 ≡ M . Any denominators
that form in the matrix are plucked out. This produces a smaller matrix M1 still
with polynomial entries, and a list of discovered numerators and denominators.
Iterate. Here is a summary:

Algorithm EDF: Variation of Gaussian elimination to discover factors of the
determinant.

Input: square matrix M . Let n = number of rows of M . All entries of M are
polynomials. Assume Det(M) �= 0.

Output: list of polynomials whose product is Det(M).

Let num be a list of numerator polynomials, initially empty.
Let den be a list of denominator polynomials, initially empty.
Let M[i] be the submatrix of M from entry (i,i) down to (n,n).

for i = 1 to n do
for j = i to n do
Find the GCD of all entries in row j.
Factor it out; append it to num.
Find the GCD of all entries in column j.
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Factor it out; append it to num.
endfor;
Find a good pivot in M[i]. Move it into position (i,i).
Do one step of Gaussian elimination using the pivot.
for j = i to n do
Find the LCM of all denominators in row j.
Multiply it by row j; append it to den.

endfor;
if desired(i)
{ every fifth or tenth row is reasonable. }
Look for common factors in num and den lists.
Consolidate num, den by dividing out such factors.

endif
endfor.

Consolidate num and den lists. den should be empty.
Output num.

Notes:

– The resultant is usually in the numerator list. It is often the last entry. The
remaining entries in the numerator list are then the spurious factors. Almost
always the numerator list is long and interesting.

– If the determinant is irreducible, the final list of numerators must be trivial,
i.e., just that one polynomial. But if it is not irreducible, there is no guarantee
that the final list of numerators will be nontrivial.

– The “consolidate” step, in which we look for a common gcd among the
numerator and denominator lists, can be scheduled in various ways, and
this can have a noticeable affect on performance. There is no obviously best
method. Experiments show that consolidation should be done every five to
ten rows.

– The definition of “good pivot” is also not rigorous. Basically, one wants the
“smallest” nonzero entry, so that the ensuing rational function arithmetic
yields “small” entries in the rest of the matrix. Heuristics can be written
depending on the number of terms, number of variables, their degree, and
the size of the numerical coefficients.

EDF can work efficiently because det usually has many factors. This is a bad
way to compute the determinant of a random matrix. But the Dixon matrices
M are far from random. The total CPU time with this method is not always
less than that of a standard determinant method; sometimes it is much more.
We will see below that this technique can be dramatically successful. For other
examples, see [16].

3 Flexibility of Polyhedra, and Computational Chemistry

This is a very old question. In two dimensions we may consider triangles, quadri-
laterals, parallelograms, or more general n-gons. We imagine they are made of
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rigid rods connected by pins that are free to pivot at ideal joints. Triangles are
obviously rigid, and any quadrilateral is flexible, though parallelograms are more
flexible in that the angle at any two sides can take on any value. In three di-
mensions we likewise consider elementary chemical models, or polyhedra with
triangular faces (like a geodesic dome).

In 1812 Cauchy [4] proved that convex polyhedra must be rigid. In 1897
Bricard [2] investigated nonconvex octahedra and found three ways they could
be flexible. However, his examples are not embeddable in 3-space; they are self-
intersecting. So the question was left unanswered, do there exist flexible poly-
hedra in 3-space? Surprisingly, in 1978 Robert Connelly [5] gave an example,
with 18 triangular faces. Steffen [18] found a flexible polyhedron with only 14
triangular faces and 9 vertices. Maksimov [18] proved that Steffen’s is the sim-
plest possible flexible polyhedron composed of only triangles. See also [22]. It
was later proved by Sabitov [21] that the volume of any such flexible polyhedron
is invariant as it flexes.

Coutsias et. al. [6] [7] showed that Bricard’s ideas have application to compu-
tational chemistry, and generalized them to solve the problem of Loop Closure,
leading to a general algorithm for computing localized torsional deformations of
molecular loops in proteins and nucleic acids. Bricard [2] states that the con-
formational problem of the octahedron is mathematically analogous to that of
a system of articulated quadrilaterals. Such systems were important in the late
19th century, with applications to the transfer of force or motion in mechanical
devices like sewing machines and automobiles, and today to robotic manipula-
tors. While generically flexible systems where the number of variables exceeds the
number of constraints are ubiquitous, here we are concerned with non-generic
flexibility, where the number of variables and constraints are equal. Then flex-
ibility is encountered only when certain conditions hold among the parameters
of the system.

In particular, we shall consider the flexibility of the planar group of three
quadrilaterals in figure 1. Corners A, B, C, D, F are freely hinged. AD, DC, CB,
BA, GF, FE, HI are rigid rods. The joints at G, H, I, and E can pivot.

4 Algorithmic Approach

We want to write a program that will determine conditions for the geometric
figure to be flexible. Our method:

– Label the sides e, b, s1, . . . , s9 (see figure 1).
– With elementary analytic geometry find six equations relating the sides to

the three angles alpha, beta, gamma at the base.
– Eliminate most of the variables; compute the resultant.
– Find a way to tell from the resultant when the figure is flexible.

4.1 The Equations

Finding the equations is elementary. The variables are ca, sa, cb, sb, cg, sg
(sines and cosines of base angles). There are eleven parameters, e, b, s1, . . . , s9.



Algorithmic Search for Flexibility Using Resultants of Polynomial Systems 73

Fig. 1. Configuration of three quadrilaterals from Bricard [2]

Expressions for each x and y coordinate for each point C, G, H, . . . are easily
found:

cx := b + e + s9 ∗ cg;
cy := s9 ∗ sg;
gx := s7 ∗ ca;
gy := s7 ∗ sa;
hx := e + s8 ∗ cb;
hy := s8 ∗ sb;
....

To form the six equations set each of these to 0 (the last three are just distances
in the plane):

sa2 + ca2 − 1,
sg2 + cg2 − 1,
sb2 + cb2 − 1,
(dx − cx)2 + (dy − cy)2 − s2

4,
(ix − hx)2 + (iy − hy)2 − s2

6,
(fx − gx)2 + (fy − gy)2 − s2

5

We have six equations, six variables, eleven parameters. The latter three equa-
tions are actually quite messy because the expressions cx, cy, hx, hy, . . . must be
expanded in terms of the variables and parameters.

4.2 Solving the System with the EDF Method

We now apply the Dixon resultant method to the six equations, eliminating all
variables but ca. The resultant will be a function of ca and the eleven parameters.

The Dixon matrix M is 29×29. The EDF method described in section 2 takes
62 minutes on the desktop Macintosh computer, and yields a list of numerators
with more than 80 entries. The last two have 275808 and 312783 terms. Dividing
each by their easily found contents c1, c2, yields the same polynomial of 201694
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terms (recall that the content of a polynomial f(x, . . .) relative to x is the gcd
of all the coefficients of xk, k = 0, . . . , degree(f, x)). This polynomial, call it
res, is easily checked to be irreducible and is the resultant. It has degree 7 in
ca. The product of the other terms in the list, call it h, has 35000 terms. The
determinant of M , as the product of all these, res2 h c1 c2, is truly gigantic,
probably not computable on any computer. Thanks to EDF, there is no need to
compute it.

4.3 Determining Flexibility

Classically, one would use the resultant by plugging in numerical values for the
eleven parameters. That yields an equation in only the one variable ca that could
be solved numerically. But how to detect flexibility in the quadrilaterals? Answer:
If the parameters have the right relations to each other to produce flexibility,
there are infinitely many values that work for ca. But res is a polynomial, so
the only way to have that many roots is for every coefficient relative to ca in
the resultant to vanish. That can be thought of as yielding eight new equations
in the eleven sides, but those equations would be too complicated to use (their
number of terms ranges from 198 to over 53000),

Instead, we have developed an algorithm Solve to produce a list of relations
among the sides that will kill all eight coefficients. If the algorithm is good
enough, any relationship producing flexibility will be on this list. However, it
is not clear that all relationships on the list must produce flexibility. The issue
of converse implication with the Dixon resultant is discussed in [3]. If a set
of relations force all eight coefficients of res to vanish, when these relations are
plugged into the original six equations, there is a positive-dimensional component
to the solution set (i.e., a continuous family of solutions). But this may not be
meaningful geometrically.

To describe the algorithm, let us first rename e ≡ s10, b ≡ s11. We present
Solve in terms of general inputs f and x. f is a polynomial in x and N parameters
si.

Algorithm Solve(f, x): Given a polynomial f in a variable x and a number N of
parameters si, find relations on the parameters that make the entire polynomial
vanish. Our problem is solved by invoking Solve(res, ca), N = 11.

Outline:

1. Kill each coefficient coef of x in turn, starting at the highest degree. Do so by
looking for contents, linear parameters to solve for, or a difference of squares.
When a substitution is found (it is possible that none will be found), plug it
in, reducing the degree of f . Continue.

2. Whether or not substitutions were found in Step 1, also try to kill the coef-
ficient coef by invoking the entire algorithm on it, relative to each variable
in coef. So, this step of Solve works by calling Solve(coef, si) within a loop.

3. Use suitable data structures to keep track of all the substitutions.
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Here is a simple example. If res were (s9∗s8−s7∗s6)ca2+(s4
2−s3

2)ca+s8−s6,
one solution would be the collection (or table) of the three relations s9 = s7, s8 =
s6, s4 = s3. On the other hand, the algorithm will fail on something random like
(5s6

3s9
6 + 2s9

4 − 7s3
4s6

4s9 + 1)ca2 + (3s5
4s6

3s9
7 + 2s7

4 + 7)ca + s5
4 + s6

3s9
5 −

s5
3s6

4s9 + 2 as none of the techniques in Step 1 apply to the coefficients of ca.
The relations may be described as follows: Partition the set of N parameters

into nonempty subsets X = {xi}n
i=1, Y = {yj}m

j=1, n + m = N . Each relation is
an equation yj = gj(xi1 , xi2 , . . .) where gj is a rational function. A collection of
m of these for j = 1, . . . , m is a solution table if f evaluated at them all is 0. In
the example above X = {s3, s6, s7} and Y = {s4, s8, s9}.
Input: multivariate polynomial f in a primary variable x and N parameters si.
Output: list of solution tables, as defined above.

Let lst be the output list of solution tables, initially empty.
Let cc = leading coefficient in f(x).
{ cc is a polynomial in the parameters. }
Get factors of cc by finding content relative to all s_i.
{ Optionally, also do more complete factoring. }
Use the factors to produce a list ls of s_j to solve for:

Within each factor, find all s_j of degree 1.
Look for factors that are differences of squares.

{ Note: the list ls may be empty. }
while not done with the list ls do

Solve for s_j, getting s_j = g(s_i_1, s_i_2, ...).
Use the relation g to replace s_j in f.
This yields fj(x), say, of lower degree.
Compute lstj = Solve(fj,x).
if lstj is not empty

Insert the relation s_j = g into each table of lstj.
Append the resulting lstj to lst.

endif;
enddo;
for every s_i in cc not in ls do

Compute lsti = Solve(cc, s_i).
for every table T in lsti do

plug the relations of T into f, yielding ft(x).
Compute lstt = Solve(ft, x).
Combine T with each table in lstt.
Append the resulting lstt to lst.

endfor;
endfor;

Look for duplicates in lst; "clean up" lst.
Output lst.
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In creating the relations sj = g(si1 , si2 , . . .), we reject any relation of the
form sj = 0, or in which all the numerical coefficients in g are negative, such
as s3 = −s2 − s5s7. Since the si are lengths on a geometric figure, these are
meaningless.

Details of combining and managing the table lists are left to the programmer.
Documented Fermat code for this algorithm is at [15].

There is no guarantee this method will work. However it does, in about 3
minutes. Thirteen tables are produced, all of which are variations or special cases
of the following three. It finds the two ways to make the quadrilaterals flexible:
all three are parallelograms, and one is a parallelogram and the other two are
similar. Interestingly, it also finds a degenerate yet still meaningful arrangement
when two of them are rhomboids.

For example, the case where the lower left quadrilateral is a parallelogram
and the other two are similar is expressed by the table

s9 = s3(e + b)/b,
s8 = s1 b/(e + b),
s7 = s2,
s6 = s4 b/(e + b),
s5 = e

All three parallelograms is

s9 = s1,
s4 = e + b,
s7 = s2,
s5 = e
s6 = b,
s8 = s3

Two rhomboids is

s9 = e + b,
s8 = s6,
s4 = s1,
s3 = b

Let us look more closely at the two rhomboids case. If those relations are sub-
stituted into the original six equations, one equation becomes extremely simple:
(b − s6 cb)(1 + cg) − s6 sg sb. We are led to setting cg = −1 and sg = 0 (so
γ = π), which kills three (not just two) of the six equations. Three remain, in
the four variables sa, ca, sb, cb:

sa2 + ca2 − 1,
sb2 + cb2 − 1,
2 s2 s7sb sa + 2 s2 s7 ca cb − 2 e s2 cb + 2 e s7 ca − s7

2 + s5
2 − s2

2 − e2
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We expect therefore a continuous family of solutions, which can be demon-
strated by numerical experiments, or by computing the (bi-variate) resultant of
the three equations, eliminating sa and sb:

8 e s2
2s7 ca cb2 − 4 s2

2s7
2cb2 − 4 e2s2

2cb2 − 8 e s2 s7
2ca2cb + 4 s2 s7

3ca cb −
4s2 s5

2s7 cacb+4s2
3s7 cacb+12e2s2 s7 cacb−4es2s7

2cb+4es2s5
2cb−4es2

3cb−
4e3s2 cb−4s2

2s7
2ca2−4e2s7

2ca2+4es7
3ca−4es5

2s7 ca+4es2
2s7 ca+4e3s7 ca−

s7
4 + 2 s5

2s7
2 + 2 s2

2s7
2 − 2 e2s7

2 − s5
4 + 2 s2

2s5
2 + 2 e2s5

2 − s2
4 − 2 e2s2

2 − e4.

The choice cg = −1, sg = 0 is actually geometrically meaningful. It corre-
sponds to two degenerate rhomboids, with the points A, C and E, I falling on
top of each other. Thus, the flexibility in this case is just the flexibility of the
single quadrilateral AEFG. The original six equations do indeed fit this picture.
See figure 2. If, on the other hand, we exclude the degeneracy of the angle γ,
then it can be shown that the resulting problem has a resultant of lower degree,
leading to additional, non-degenerate, discrete conformations. The identical van-
ishing of the resultant of the full problem for this case would completely mask
the existence of these discrete components of the solution set.

Fig. 2. Degenerate rhomboids

4.4 Future Work

By writing the equations in terms of the tangents of the half-angles, we can
reduce the problem from six to three equations:

a1 ∗ t21 ∗ t22 + b1 ∗ t21 + 2c1 ∗ t1 ∗ t2 + d1 ∗ t22 + e1 = 0,

a2 ∗ t22 ∗ t23 + b2 ∗ t22 + 2c2 ∗ t2 ∗ t3 + d2 ∗ t23 + e2 = 0,

a3 ∗ t21 ∗ t23 + b3 ∗ t21 + 2c3 ∗ t1 ∗ t3 + d3 ∗ t23 + e3 = 0

The ti are the half-angle tangents of the three base angles. As before, these
equations result from elementary analytic geometry. The parameters ai, bi, . . .
are quadratic functions of the eleven sides. For example,

a1 = e2 + s2
2 + s2

7 − s2
5 − 2e ∗ s2 + 2e ∗ s7 − 2s2 ∗ s7
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which is a product of two linear terms. This is the form of the equations as
derived by Bricard.

The resultant of this system has 5685 terms. Shall we apply our flexibility
searching algorithm as before? It is more subtle, as now we must try relations
like a1 = 0 or a1 = −d3 − e2. When the parameters were actually the sides,
substitutions like this made no sense and were excluded, thereby streamlining the
search. We have recently modified algorithm Solve to consider these cases, and
the work is ongoing. Success on this set of three equations would be significant
because the identical set of equations arises in other contexts, and a variant
(including also the “missing” terms, such as t21 t2, t3, . . .) gives the conformational
equations of a protein or nucleic acid backbone [6], [7].
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Abstract. It is known that five points in R
3 generically determine a

finite number of cylinders containing those points. We discuss ways in
which it can be shown that the generic (complex) number of solutions,
with multiplicity, is six, of which an even number will be real valued
and hence correspond to actual cylinders in R

3. We partially classify
the case of no real solutions in terms of the geometry of the five given
points. We also investigate the special case where the five given points
are coplanar, as it differs from the generic case for both complex and real
valued solution cardinalities.

Keywords: Enumerative geometry, Gröbner bases, nonlinear systems.

1 Introduction

Given five generic points in R
3 it is not hard to show that there are finitely

many solutions to the set of equations that determine cylinders containing those
points. This is to be expected because cylinders have five degrees of freedom (a
radius and four parameters to determine the axial line). Several papers prove
that the generic number of such solutions, in complex space, is six (counted with
multiplicity) [4,7,8,13]. Of these any even number may be real valued.

This is of importance for several reasons. First we indicate two constraint
geometry interpretations of the problem.

• Given five points in R
3, find the smallest positive r and axis parameters

such that the cylinder of radius 2r with those parameters tangentially encloses
the balls of radius r centered at the points [8,22].

• A common need in scene classification [6] is to find a best fitting cylinder
for a set of more than five data points. To do so one might start with an exact
fit to five points, followed by optimization methods to get a best fit to the full
ensemble. See [13] for several references to applications of this.

In order to tackle either of these it is necessary to find all cylinders through
five given points [13]; clearly it is useful to know the expected size of the solution
set (or an upper bound, if we restrict to only real valued solutions). In this paper
we discuss several aspects to this enumeration problem.
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Some experimentation indicates that it is not infrequent, when working with
pseudorandom point coordinates, to have configurations with no real cylinder
solutions. We investigate this situation in an attempt to understand the geometry
of the configurations that give rise to it. Another point of interest is the case
where the five points are coplanar. In this situation we will see that the generic
number of complex solutions to the cylinder parameter equations is four. It turns
out, however, that the number of real solutions is at most two. In discussing the
case of coplanar data we state a conjecture regarding the degenerate situation
where there is a dimensional component to the cylinder solutions. This is of
interest insofar as configurations near one with such a solution set might exhibit
numerical instabilities in a computational setting.

The related problem of finding cylinders of a given radius through four given
points in R

3 is discussed in [9,10,15,22]. The special case of four coplanar points
is discussed in [18]. In contrast to cylinders through five coplanar points, all
cylinder solutions of given radius through four coplanar points can be real valued.

This paper is a companion to [13]. Substantial emphasis therein was placed on
various aspects of solving systems and related computation for purposes of deduc-
ing properties of cylinders through five points. Here we rely primarily on elemen-
tary arguments that cover the theory, with less focus on computational specifics.
Experiments that gave rise to this use code similar to that presented and explained
in [13]. The rest of this paper is as follows. Section 2 proves that there are gener-
ically six (possibly complex valued) solutions to the equations for cylinders con-
taining five given points. We begin by formulating polynomial conditions that the
fourth and fifth points project to the same circle as the first three in a given di-
rection, and work with the ideal formed by these polynomials. The main tactic
is a count of solutions in projective space, followed by a simple computation to
enumerate solutions at infinity. We then cover some implications of this. Section
3 discusses in detail the case of no real solutions. Here the main tool is again the
cocircularity polynomials; we now make observations about the behavior of their
respective direction curves in real space. In section 4 we look at cases that have six
real solutions. Section 5 investigates the special case when the points are coplanar.
This is followed with a summary and some directions of further inquiry.

One way to approach some of these problems, from the perspective of au-
tomated geometry, is to employ comprehensive Gröbner systems as in [20], to
classify both generic solutions and specialized configurations e.g. where the num-
ber of solutions becomes infinite. The difficulty is that, to date, the computations
involved have been intractable. One could regard the alternate approach taken
in this paper as a blend of computational tools and human guidance, to make
progress on problems for which fully automated methods seem to falter. That
is to say, we do not work with full-blown automated geometric deduction tools,
but borrow a bit from underlying computational methods.

In the sequel we use “cylinder” to denote solutions to polynomial equations
for a cylinder, regardless of whether they are real or complex valued. To specify
the former we use“real cylinders”. Typically we will use the term “parameters”
to refer to coordinates in the configuration space of the five points (which we may
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identify with R
15 or even C

15). The values that specify a cylinder, to wit, radius
and axial line features, are generally referred to as “variables” (since they are
what we solve for in finding cylinders) or as“cylinder parameters” to distinguish
them from the coordinate parameters already mentioned.

I thank the anonymous referees of this and a prior draft. Their several useful
remarks and suggestions improved both exposition and references.

2 Counting (Possibly Complex) Cylinders Through Five
Points

We recall a way of setting up the problem that gives rise to two equations in
two unknowns. This specific formulation is used in [13] but similar methods
are given in [7,8]. We place one point at the origin, another at (1,0,0), and a
third in the xy coordinate plane at (x2,y2,0). We project these onto the set of
planes through the origin parametrized by normal vector (a,b,1). In each such
projection they uniquely determine a (possibly degenerate) circle. We obtain the
two polynomials below by enforcing that the two remaining points, (x3,y3,z3)
and (x4,y4,z4), project onto the same circle.

(−x3y2 − b2x3y2 + x2
3y2 + b2x2

3y2 + x2y3 + b2x2y3 − x2
2y3 − b2x2

2y3+

2abx2y2y3 − 2abx3y2y3 − y2
2y3 − a2y2

2y3 + y2y
2
3 + a2y2y

2
3 − bx2z3−

b3x2z3 + bx2
2z3 + b3x2

2z3 + ay2z3 + ab2y2z3 − 2ab2x2y2z3 − 2ax3y2z3+

by2
2z3 + a2by2

2z3 − 2by2y3z3 + a2y2z
2
3 + b2y2z

2
3 ,

− x4y2 − b2x4y2 + x2
4y2 + b2x2

4y2 + x2y4 + b2x2y4 − x2
2y4 − b2x2

2y4+

2abx2y2y4 − 2abx4y2y4 − y2
2y4 − a2y2

2y4 + y2y
2
4 + a2y2y

2
4 − bx2z4−

b3x2z4 + bx2
2z4 + b3x2

2z4 + ay2z4 + ab2y2z4 − 2ab2x2y2z4 − 2ax4y2z4+

by2
2z4 + a2by2

2z4 − 2by2y4z4 + a2y2z
2
4 + b2y2z

2
4) (1)

One observes from this that the number of solutions is generically finite, and
by Bezout’s theorem it is moreover bounded by nine, as each polynomial has
total degree of three in the variables (a,b). Moreover, using, say pseudorandom
values for the coordinate parameters and solving for the cylinder parameters as
per [8] or [13] one obtains six solutions. Thus we know there are generically at
least that many solutions.

Before developing the theory it might be instructive to see how these curves
intersect real space. We work with an explicit set of points: (0, 0, 0), (1, 0, 0),
(5/3, 3/4, 0), (5/4,1, 4/5), (3/4, 1/3, 1/2). Plugging these parameters into the
polynomials above gives

(−9925 − 12960a + 9612a2 + 2000b + 9000ab+

6480a2b − 5713b2 − 20160ab2 + 12800b3,

− 1063 − 324a + 144a2 + 1014b + 792ab + 486a2b−
559b2 − 1512ab2 + 960b3) (2)
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Fig. 1.

The zero sets are plotted in Figure 1. One sees from the curve intersections
that there are two real solutions to the pair of equations, hence two real cylinders
through this particular set of five points.

Proposition 1. Configurations that give rise to an empty solution set or to a
solution set of positive dimension lie on a variety in the configuration space.

Proof (sketch). One obtains, in principle, a description of the generic solutions
by forming a lexicographic Gröbner basis for the system (1). The process of doing
this gives rise to the generic basis because at steps along the way one is allowed
to divide by polynomials in the indeterminates. All inputs that fail to give the
generic basis thus must satisfy conditions among the coordinates that cause these
polynomials, upon specialization, to vanish. As there are finitely many steps in
forming the basis, there are finitely many such conditions. As these vanishing
conditions are defined by polynomials, their union is a variety. We may further
refine it. Some configurations might fail to give the generic basis but still yield a
nonzero finite solution set. If we exclude the conditions that give this situation,
we are still left with a variety for which we get either zero or infinitely many
(complex valued) solutions. ��

Definition 1. Above we saw that the subset of nongeneric configurations that
give either zero or infinitely many solutions comprises a variety. We refer to this
as the “bad variety”, denoted Vbad. Several results below are stated in terms of
configurations that miss this variety.

We remark that Vbad is a part of the discriminant variety (see [12]).

Proposition 2. There is a nonempty open set in our configuration space (which
is, in effect, R

15 ) for which we obtain no cylinders in R
3 .
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Proof. If one point is contained strictly within the convex hull of the other
four then, as cylinders are convex, we have no real cylinders containing the five
points. Small perturbations in real configuration space do not alter the situation
that one is inside the hull of the other four. Hence there is an open set in real
configuration space for which we obtain no real cylinders. ��

Corollary 1. The maximum number of cylinders, already shown to be bounded
by nine, is in fact no larger than eight.

Proof. This is a consequence of the following facts. (i) Restricting to real inputs
does not move us out of the generic case because this restriction is not algebraic.
(ii) Given real data, complex solutions appear in pairs. (iii) The case where one
point lies in the hull of the other four contains an open subset in the real part
of the parameter space. Hence there is an open set in parameter space for which
there are only complex solutions. So in general there must be an even number
of solutions. ��

This also shows that the the number cannot be seven. So we know it is either
six or eight.

Theorem 1. Five generic points in R
3 determine six distinct sets of cylinder

parameters, of which an even number are real valued.

Proofs may be found in [4,7,8,13]. They make use of various algebraic or geomet-
ric features particular to this problem. An algorithmic approach in [14] proves
this blindly, that is, without use of geometry-specific features. (As with many
algorithms in geometry, one can argue as to whether this is a good or bad thing,
insofar as automated proofs often convey little insight. Regardless, algorithmic
technology should not be ignored.) Proofs in [13] count roots based on either a
Gröbner basis or resultant computation from (1). We give an independent proof
below.

Proof. We will count the solutions at infinity for the polynomials shown in (1).
We do this by homogenizing and setting the homogenizing variable to zero to
get the initials (that is, the degree forms). They are

(−b3x2z3 + b3x2
2z3 + ab2y2z3 − 2ab2x2y2z3 + a2by2

2z3,
− b3x2z4 + b3x2

2z4 + ab2y2z4 − 2ab2x2y2z4 + a2by2
2z4)

The solution set for (a, b) consists of the three cases a → −b(1 − x2)/y2,
a → bx2/y2, and b → 0. We thus obtain three solutions at infinity for the
homogenized system (these are simply the directions of the three lines between
any pair of the first three points). The number of solutions from the Bezout
theorem, nine, counts these three, and hence there are six solutions in affine
space. ��

In [13] a mixed volume computation is done in order to bound the number of
solutions using a method presented in [23]. The value obtained in this computa-
tion is 8, and from [23] we moreover know that that will be the generic number
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of solutions for problems with the same Newton polytope for monomial expo-
nent vectors. To understand why this cylinder problem is not generic for the
mixed volume computation, note that the initials are identical up to a constant
multiple; any random perturbation (say, add b3 to the first polynomial) will give
only one solution at infinity, and therefore yield 8 finite solutions.

Proposition 3. There is a closed set with nonempty interior in R
15 − Vbad for

which we obtain six real cylinders provided we count solutions by multiplicity.

Proof (sketch). We may count the number of real roots using the Rule of Signs
[19] on the univariate polynomial in any generic lexicographic Gröbner basis.
This gives a closed condition for the boundary of the set of configurations that
yield six sets of real valued cylinder parameters. To show it has nonempty interior
it suffices to demonstrate one such configuration that has no multiple solutions.
But this is the case for the two six-real-cylinder examples shown in [13] (one of
which is formed from two regular tetrahedra sharing a common face). ��

Similar argument shows that the sets in R
15 − Vbad that give rise to two or four

cylinders real cylinders also have nonempty interiors. ¿From Proposition 2 we
already knew this to be the case for configurations that give no real cylinders.

It may be useful to look at Theorem 1 in the context of what are known as
comprehensive Gröbner bases [2,17,24]. This construction in effect allows one to
circumvent the problem that Gröbner bases are not continuous in their input
data; indeed it seems designed to address that defect. Such a basis contains
encoded all Gröbner bases, for a given ideal with respect to a specified term order,
under all specializations of the parameters. It does so in essence by doing multiple
polynomial reductions on a given polynomial in the basis, to simultaneously allow
for the possibility that any nonnumeric leading coefficient might or might not
be zero. The upshot is that the coefficients of the comprehensive Gröbner basis
vary continuously in the parameters of the configuration. The typical use of such
a basis is in concrete examples when one wishes to make case distinctions based
on parameter values. When a lexicographic term ordering is utilized we can say
a bit about the structure of such bases in the (generic) case of finite solution
sets, using insight gained from our examples.

For instance, suppose we have six distinct solutions in a situation where the
Shape Lemma [1] does not apply (see [13] for two such examples involving six
distinct real valued cylinders). We consider the basis for such a numeric special-
ization of the general problem. From Gröbner basis theory we know it contains
a univariate polynomial in the lexicographically last variable (say, a). The de-
gree of this polynomial must be less than six as we have assumed the Shape
Lemma does not hold for this particular ideal and term ordering. We refer to
the remaining variables as “higher”.

We return for the moment to the general case wherein coefficients are again
indeterminate parameters that vary in our configuration space. Note that a com-
prehensive Gröbner basis encodes, in vanishing conditions of leading coefficients,
the basis for specializations of the sort just described. It also encodes the generic
basis. By the Shape Lemma this latter contains linear polynomials in each of
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the higher variables with lead coefficients that generically do not vanish. By [11]
all parametrized coefficients of at least one such linear polynomial must become
identically zero for the nongeneric type of specialization under consideration
(otherwise we would have fewer than six solutions). Hence the comprehensive
basis must also contain nonlinear polynomials in those variables.

Now consider a generic specialization of the configuration parameters. Again
invoking results from [11] we know that solutions are obtained from the subset of
the comprehensive basis that encodes the generic case (that is, the generic degree
six univariate polynomial and the polynomials that are linear in each of the higher
variables). These are shown also to satisfy those polynomials that are nonlinear in
the higher variables. So such a linear polynomial (say, in the variable b) must have
the form f(params)(b − g(a)) where the second factor divides any corresponding
polynomial(s) of higher degree in b. In other words, when the first factor, which
involves only parameters, is nonzero, then where the second is satisfied all those
in higher degree must also be satisfied; moreover they cannot all vanish when the
first factor vanishes, so they must be divisible by the second factor.

3 Configurations with No Real Solutions

Theorem 2. Suppose we have four noncoplanar points in R
3 . They are the ver-

tices of some tetrahedron. Then there is an open set S containing the open tetrahe-
dron and a dense subset of its boundary in the configuration space, such that if the
fifth is chosen in S there will be no real cylinders containing all five points.

Remark 1. If the fifth point is inside the convex hull of the other four then we
already know this result. Now take the tetrahedron formed by the four points.
Through each vertex the planes containing the three coincident faces form a cone
with triangular base. If the fifth point lies within that cone then it obscures that
vertex, i.e. the vertex lies inside the new tetrahedron formed by the fifth point
and the remaining three. Hence this case is also covered by the “one point in
the hull of the others” situation. Note that in this case the fifth point need not
be near in distance to the other four.

Proof (1). Suppose the fifth point lies on a face of the tetrahedron formed by
the other four. Then the convexity argument still tells us that no cylinder in
R

3 can contain all five points. As we assumed the tetrahedron coordinates are
generic, we are in one of two situations: either having the fifth point lie on a
face formed by three others puts the configuration in Vbad or it does not. We
show that generically it does not, or in other words, the algebraic condition
that four points are coplanar is not a condition for the bad variety. That this is
so follows from the trivial observation (verified computationally) that there are
configurations with four coplanar points that give rise to lexicographic Gröbner
basis with the generic “shape”; were this a condition to lie in the bad variety
then every configuration with four coplanar points would be in it.

The preceding argument shows that generically the fifth point is not on a
tetrahedral face of the other four, so the set of such fifth points is dense in the
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set of all boundary points of the tetrahedron. By genericity we may assume that
we have a univariate polynomial of degree six for one of the cylinder parameters.
As there are no real cylinders containing this configuration, this polynomial has
exclusively nonreal roots. These roots vary continuously with the configuration,
hence the imaginary parts remain nonzero under small perturbations of the five
points. Thus there is an open set around this point on the boundary for which
we still obtain no real roots. As we require real roots in order to obtain cylinders
in R

3 this suffices to finish the proof. ��

Proof (2). This line of reasoning was suggested by [Richard Bishop, private com-
munication]. In order for all five points to lie on a cylinder there must be a plane
tangent to the unit sphere, and a circle in that plane, such that they all project
onto that circle. Suppose the fifth point is inside or on the boundary of the tetra-
hedron formed by the other four. Then it is clear that the projection of the five
points onto any such plane will have the projection of this last point contained in
the quadrilateral formed by the projection of the other four. Hence any quadratic
in the plane that contains all five projected points must be a hyperbola (because
all other quadratic curves are convex). Moreover the parameters of the hyperbola
equation are continuous in the locations of the five points. As the set of projection
planes is compact, a small perturbation of the fifth point beyond the hull of the
other four will not alter the situation that the five points project onto hyperbolas
in all such planes, hence they cannot lie on any cylinder in R

3. Hence from every
boundary point on the tetrahedral hull of the four points, we may perturb outward
some minimal distance (depending on that boundary point) and still have no real
cylinders. As the tetrahedron boundary is compact we deduce that there is a min-
imum positive distance we can move outside and still not get real cylinders. ��

Corollary 2 (to proof). There is an open set S containing the closed tetra-
hedron, such that if the fifth is chosen in S there will be no cylinders in R

3

containing all five points. In other words, the “bad” variety in configuration
space is not an issue.

We now wish to show that all configurations that give no real cylinders arise in
the setting of Theorem 2. Specifically we state the following conjecture.

Conjecture 1. Suppose we have a configuration of five points in R
3 for which no

real cylinders exist, and moreover assume that no point lies in the hull of the
others. Then one of the points can be moved anywhere inside the convex hull of
the full set and still we will get no real cylinders. In particular we could move
this point along a line segment from outside to inside the hull of the other four,
and at no point on that path would we get real cylinders. Thus we could regard
the given configuration as a perturbation of one that has one point inside the
hull of the other four, effectively providing a converse to Theorem 2.

We make observations of sufficient conditions for a proof and then state as a
theorem a special case wherein we can fullfill the conditions. First consider the
two curves that are solution sets to the two polynomials in (1). They are cubics
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that have one or more closed topological components in two dimensional real
projective space, and because they are cubic they each have at least one real
component that goes to infinity. (It is well known that they are connected as
complex curves; by “components” we mean the obvious thing with respect to
intersections with real space.)

We regard each point on such a curve as a solution to the direction parameter
equations given by the four points in configuration space lying on a cylinder
with axis in that direction. In other words, each point on the solution curve in
parameter space defines a cylinder through the four points in configuration space
that were used to form that equation. Suppose that at a solution on one such
component, the fifth point lies inside the cylinder thus obtained (we are being
loose with terminology but trust the meaning of “inside a cylinder” is clear).

Claim: For generic configurations it must then lie inside all cylinders defined by
points on that affine component of the solution curve.

The proof of this claim has a small complication. Specifically, we must show that
in order for the fifth point to “escape” outside the cylinder containing the other
four, it must cross that cylinder (in contradiction to our hypothesis that there are
no real cylinders containing all five points). A priori there is another way it might
escape: the cylinder containing four can degenerate to a plane and subsequently
reverse its “open” side. This degeneration can arise if the four points project onto a
line for some direction. Such a direction must then lie in all four planes containing
three of the four points. This gives an overdetermined and generically inconsistent
set of linear conditions. We thus have verified the claim for generic configurations:
if the fifth point is inside a cylinder containing the other four, then it stays inside
the cylinders defined by all points on that component of the solution curve, and
these cylinders each contain the other four points.

Next we observe that, were this true not just on one topological component of
the direction solution curve, but on all of them, then that fifth point works in the
conjecture. We see this as follows. When the fifth point lies inside all cylinders
defined by a solution curve component, then it projects along the cylinder axis
to a point inside the circle that intersects the projections of the other four. The
same must hold for any other point in the interior of the convex hull of the five
points. This is because such a point, written as a convex combination of the five,
must either be in the interior of the tetrahedron defined by the first four (and
thus project to the interior of the circle they define), or else have a nontrivial
component of that fifth point and again thereby project to that circle interior.

We now proceed to construct a solution on one direction curve, that is, a
cylinder containing four of the points, such that the fifth is inside it. We can
arrange our four so that three are in the xy coordinate plane and the remaining
two have a segment joining them that intersects the triangle defined by the
first three (using a rotation, such an arrangement can always be found for a
configuration of five points in R

3). We place the fourth point on the z axis
beneath the origin. Projecting from the fourth point onto a plane in the direction
of the segment between the fourth and fifth points gives a unique circle containing
the first three. The cylinder along that direction and containing that circle thus
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encloses the fourth and fifth points. Now we simply move one of the direction
coordinates, forming new projections and cylinders containing the first three
points, until one of the remaining points (say, the fourth) hits that cylinder.
What we have done is to arrive on one of the two direction solution curves we
set up in (1). Thus we obtain a cylinder containing four points and enclosing the
fifth. From the discussion above we know that this holds for all cylinders defined
by this affine component of the curve of directions.

At this point we have a sufficient condition for the conjecture to hold. We
simply require that each of the solution curves have only one affine component.

Theorem 3. Given five points in R
3 for which there are no real solutions to

the cylinder equations, suppose there are three such that

(i) The segment joining the remaining two intersects the triangle bounded by
those three.
(ii) The two curves of solution directions for cylinders containing those three
and either the fourth or fifth respectively, each have only one component in real
projective space.

Then either the fourth or fifth point can be moved anywhere inside the hull of the
five and there will be no real cylinder containing this new point and the other four.

As remarked above we can always order the points in such a way that the first
condition holds. But then in general the second condition will not hold. We
believe the conjecture to be true all the same, though we do not have a proof at
this time. We also mention that extensive graphical evidence suggests that most
often these curves have one component in two dimensional real projective space.
This is found by taking random examples with three points in the xy coordinate
plane and the fourth and fifth above and below respectively, throwing away those
that have real solutions, throwing away from the rest those for which the segment
between fourth and fifth points does not go through the triangle bounded by the
first three, and plotting the zero level sets for the two cylinder equations in
remaining cases. “Most often”, in this setting, refers to specifics of how we select
our five points; we use pseudorandom values in a unit interval for each of the
free parameters. In any case it would seem that this method applies frequently
to configurations that give rise to no real cylinders.

We illustrate with a configuration that meets the conditions of the hypotheses.
There are no real cylinders containing the set of points (0,0,0), (2,0,0), (1,2,0),
(5/4,1,1/2), and (3/4,1,-1/3). This point set is shown in Figure 2. It may be seen
that the segment joining highest and lowest points pierces the triangle formed
by the other three.

Here are the direction parameter polynomials obtained by requiring that the
fourth and fifth points respectively project onto the circles determined by the
first three points and a given direction vector.

(−575 − 40a − 384a2 − 40b − 200ab + 160a2b − 159b2 − 40b3,
− 207 − 24a − 128a2 + 24b + 72ab − 96a2b − 47b2 + 24b3)
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Fig. 2.

Figure 3 shows plots of their respective zero sets. It is clear from the way
the respective affine parts will meet at infinity that each has one topological
component in real space, and moreover they do not intersect at finite points.
Hence Theorem 3 applies to this configuration.
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Fig. 3.

Note that we can weaken the second hypothesis of Theorem 3 so that the
curves may have multiple components, provided the components for one are not
separated by any component of the other. Graphical evidence supports the belief
that this weaker requirement is always satisfied. Clearly a proof to this effect
would suffice to prove the conjecture.

4 Configurations That Have Six Real Solutions

We describe in brief two cases that have six solutions. Further detail may be
found in [13].

(1). Start with four points forming vertices of a square in the xy plane. This
is the base of a pyramid with the fifth point as its apex above the centroid of
this square. We obtain two horizontal cylinders each passing through a pair of
opposite triangular faces of the pyramid. The remaining four each pass through
a triangular face, angled upward, and an edge of the base. This case was first
posted in [21].
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(2). Take as five points the vertices of two regular tetrahedron sharing a
common face. This presents an interesting set of symmeries. Any cylinder will
have a “mirror image” obtained by reflection across the joined face, and also
have two “conjugate” obtained by rotation of π/3. We show a visualization of
this in Figure 4; the common face lies in the horizontal plane.

Fig. 4.

We now show the planar curves in real space that one obtains from the pair of
cocircularity conditions in (1). We also perturb the five points slightly and show
the resulting intersections. This is because the unperturbed case is a degenerate
setup and the actual curves are each three lines. The perturbation indicates how
each triad of lines can split at intersections into pairs of curves in the projective
plane.

This configuration has some interesting properties. If the tetrahedron edge
length is

√
3 then the common cylinder radius is 9/10. It is related to a configu-

ration from [15], wherein we have four points and a fixed radius for which there
are twelve real cylinders through the points. For that we take vertices of one of
the tetrahedra as our four points, and 9/10 as the common radius. We obtain
four sets of six cylinders by gluing tetrahedra respectively to each face of the
given one. But these pair off for a total of twelve cylinders.

This configuration is also, perhaps surprisingly, related to the case of no real
cylinders. We start with the doubled regular tetrahedra. There are two vertices
not on the common face. Now let one of them move along the axis connecting it
to the other. The two and three fold symmetry considerations indicated above
imply that we either have six real cylinders (counting multiplicity), or none. It
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is not hard to realize that either moving it “too close” or “too far” from the
opposite vertex gives rise to a configuration approaching the case of one point
inside the hull of the other four. This is quantified in an explicit computation in
[13]. It is also makes for an interesting dynamic geometry visualization to change
the one vertex and depict the six cylinders coalescing into three pairs (multiple
roots) before vanishing from real space [5].

It is an interesting question whether all cases of six real cylinders arise as
“perturbations” of the two cases discussed above. As a starting point it would
be useful to know whether they can be perturbed into one another with six real
cylinders for every configuration along the perturbation.

5 Nongeneric Configurations

Thus far we have discussed exclusively the generic situation. It is of interest to
make a few observations about the nongeneric case. This in turn sheds light on
cylinder solutions for point configurations that are generic but “near” to such
nongeneric ones.

Proposition 4. Sets of five coplanar points are not generic insofar as they do
not give six solutions to the cylinder equations. In general they give four such
solutions.

Proof. This follows from a straightforward computation with the pair of poly-
nomials from (1). We substitute zero for the two nontrivial z parameters and
compute a Gröbner basis in terms of the cylinder direction variables (a, b). This
is in the form specified by the Shape Lemma and has a univariate polynomial
of degree four with a second polynomial linear in the remaining variable. Hence
for coplanar configurations there are generically four solutions rather than six.
Of course there are further degeneracies that can arise. If, for example, four of
the points are collinear then there will be infinitely many cylinders containing
all five.
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To finish the proof we must show that there are no cylinders parallel to the xy
coordinate plane (as we tacitly set the z coordinate of the normal vector to 1).
But this is clear from the fact that such a cylinder would intersect the coordinate
plane in a pair of lines, and generically the five coplanar points do not lie on any
pair of lines. ��

Corollary 3. As configurations of five points move toward a generic coplanar
configuration, two of the six (possibly complex) cylinder solutions go to infinity.

This shows that in any comprehensive Gröbner basis for the system, using a lex-
icographic ordering, the univariate polynomial of generic degree six has leading
and second coefficients vanish when the points are coplanar. The third coefficient
will in general not vanish in this situation.

We now describe what happens in the generic coplanar case.

Theorem 4. Given five coplanar but otherwise generic points in R
3 there are

four (complex) cylinders containing them. Of those, either zero or two will be
real cylinders.

Proof. That there are four complex cylinders was noted in the proof to Propo-
sition 4. The five points uniquely determine a quadratic curve in the plane in
which they lie, and generically it is either a hyperbola or an ellipse. The inter-
section of a cylinder with a plane is likewise a quadratic in that plane. Thus any
cylinder containing five coplanar points contains the entire quadratic curve they
determine. If that curve is a hyperbola then no real cylinder can contain it. If
instead it is an ellipse then there are two real cylinders that contain it. These
two cylinders have radial axes that each go through the center of the ellipse
and lie in the plane perpendicular to the ellipse minor axis, and their angle of
intersection is determined by the eccentricity of the ellipse. ��

For illustration we show in Figure 6 the case of two real cylinders when the
points (all in the xy coordinate plane) are (1, 0, 0), (-1/3, 1, 0), (4, -1, 0), (1/2,
2/3, 0), and (1/4, -1, 0).

We can use the computational construction (1) to shed light on the problem
of counting the number of cylinders of a given fixed radius through four points
(which, as noted in [15], is equivalent to the problem of counting the number of
lines simultaneously tangent to four given spheres of equal radius). As the radius
is fixed (say, to 1), we are no longer free to rescale so we would use (x1, 0, 0)
for our second point. We would project to circles using only two points along
with the given radius. An important difference to arise is that for projections
of two points onto any given plane, there are two circles of the given radius
containing them. This ansatz would lead us to expect twice as many solutions
for this problem as we obtained for counting cylinders through five points. That
there are in fact twelve (not necessarily real valued) cylinders of given radius
through four generically placed points is a theorem in [15]. In the special case
that the points are coplanar, that there are eight such cylinders is a result of
[18]. All of them can be real valued which is an interesting contrast to the result
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Fig. 6.

of Theorem 4 above. We remark that the generic number of complex solutions
to these systems is obtained algorithmically in [14].

We would like a converse to Proposition 4. We begin with the observation that
any configuration with four (or five) collinear points, or three collinear points
and the remaining two on a parallel line, will contain infinitely many cylinders.
We would like to know whether these are the only configurations for which that
is the case. We note that a similar situation was shown in [3] for having infinitely
many lines tangent to four given spheres.

Once three noncollinear points are fixed in a plane, there are finitely many
ways to combine the remaining two points such that one of the above condi-
tions holds. For any such combination, there are two degrees of freedom in how
the points are placed. We will show that this is consistent with dimensional
considerations.

Suppose we have infinitely many solutions. If they arise from but finitely many
axial directions, then one can readily show that any infinite solution set comes
about from four collinear points or points lying on two parallel lines, so that the
axis is uniquely determined. We now assume this is not the case, that is, we have
infinitely many axial directions. Consider our axial direction cubics from (1). In
order to have infinitely many solutions, the algebraic curves that are solution
sets to these two polynomials must share a component. That is, on a component
of directions in which four points project onto a circle, the fifth must project
onto that same circle.
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Observe that cubic equations of the form imposed by our choices above have
eight degrees of freedom (general cubics have ten coefficients but ours lose one
degree three term, and the cubics are only defined up to nonzero scalar multipli-
cation, giving eight degrees of freedom). Hence pairs of cubics of that form have
sixteen parameters. The set of pairs we can actually attain has eight degrees of
freedom (from the eight coordinates not a priori known). In order that a pair
share a component, they must factor (they cannot be identical unless a pair of
points coincides, in contradiction of hypotheses). The set of pairs that share a
common factor has dimension ten. Thus we expect the dimension of the set of
attainable cubic pairs that share a component to be given by the intersection
dimension, which is two.

Conjecture 2. Any configuration of five distinct points for which there is a di-
mensional component to the cylinder parameter solution set must be coplanar.
Either four points are collinear, or three are collinear with the remaining pair
on a line parallel to that containing the first three.

This conjecture, alas, is not true as stated. In particular it does not hold in
complex space. Here is a specific configuration violating the hypotheses, for which
the solution set is infinite.

(0, 0, 0), (1, 0, 0), (−2, 8/5 − (6i)/5, 0), (2, −2, 1), (−2, 14/5+ (12i)/5, −3)

It remains an open question whether there are configurations with real coor-
dinates which comprise a counterexample to the conjecture. Attempts to prove
this via computational tactics (formulate relations based on factoring of the
polynomials and equating a pair, finding relations among the data parameters,
then checking that no real solutions can exist) have foundered to date due to
computational complexity. That complex solutions can exist is already a bad
sign insofar as it means one must use real solving technology e.g. cylindrical
algebraic decomposition, and this is known to be computationally intensive.

6 Summary

We reviewed in brief the fact that there are generically six solutions to the
equations for cylinders through five points in R

3, noting that of these any even
number, counting multiplicity, may be real valued. We discussed in some detail
the case where there are no real valued solutions. Specifically we have a theo-
rem and conjectured converse relating the case of no real cylinder solutions to
perturbations of having one point within the convex hull of the other four. We
also described configurations for which there are six real solutions.

We proceeded to the special case where the points are coplanar. In this situa-
tion generically there are only four solutions, and, in contrast to the noncoplanar
case, at least two are not real valued. When two are real valued and distinct,
small perturbations from coplanarity will not alter this situation. A natural ques-
tion is whether there is a plausible conjecture, similar to that for the case of no
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real cylinders, to the effect that all cases of two real cylinders are perturbations
of coplanar cases.

It would be interesting to get a geometrical description of what configurations
will give rise to the other numbers of real valued cylinders. In [13] it is observed
that all computational examples observed having six real solutions appear to be
perturbations of the two particular configurations we mentioned. But this is quite
far from a systematic understanding of the geometry of five point configurations
that give six real solutions. We seem to know even less about the case of four
real solutions.

Related to the geometric classification of where the number of real or com-
plex solutions changes, there is the algebraic description via real and complex
algebraic sets. From this point of view it would be nice to better understand
the discriminant variety [12,16]. Unfortunately this seems to be computationally
intractable using existing technology.
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Abstract. In geometric constraints solving, the detection of dependences
and the decomposition of the system into smaller subsystems are two im-
portant steps that characterize any solving process, but nowadays solvers,
which are graph-based in most of the cases, fail to detect dependences due
to geometric theorems and to decompose such systems. In this paper, we
discuss why detecting all dependences between constraints is a hard prob-
lem and propose to use the witness method published recently to detect
both structural and non structural dependences. We study various exam-
ples of constraints systems and show the promising results of the witness
method in subtle dependences detection and systems decomposition.

1 Introduction

Today all CAD CAM geometric modelers provide a geometric solver that enables
designers to define shapes (geometric configurations) as solutions of a set of ge-
ometric constraints [3,24,11,8]. Geometric constraints specify distances, angles,
incidences, and tangencies between basic geometric elements such as points,
lines, circles, conics or higher degree curves (e.g. Bézier curves) in 2D, and
lines, planes, quadrics or higher degrees algebraic curves and surfaces in 3D. In
practice, designers interactively specify constraints on an approximation of the
wanted configuration (called a ”sketch”) – the solver is often called a sketcher.
The solver operates in various steps: (i) reads the sketch; (ii) translates the sys-
tem of constraints into some internal data structure (typically some graph, and
a system of equations...); (iii) analyses and decomposes the system; (iv) solves
the subsystems obtained from the decomposition either with some formula or
with a numerical method; (v) and finally assembles solutions of subsystems and
displays the corrected sketch.

As the system is typically non linear, there is usually more than one solution,
and the solver is supposed to provide the solution that gives the closest config-
uration to the intention of the designer. It turns out that, in 90% of the cases,
the Newton-Raphson method converges to this solution when it starts from the
initial guess provided by the sketch. When the Newton-Raphson method fails,
the designer can resort to another method, slower but safer, like homotopy: for
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an algebraic system of equations, the attraction basins for homotopy are semi
algebraic sets, the ones of Newton-Raphson method are fractals; this is an em-
pirical argument that the homotopy method should converge to the closest root
more often than the Newton-Raphson method.

Dimensioning a complex mechanical part involves hundreds or thousands of
geometric constraints, that is why qualitative analysis of the system of con-
straints plays an essential role in preparing the resolution [21,15,20,24]. Today
this analysis seems to be graph-based for all industrial solvers, as far as it is
possible to know.

Graph-based methods develop some kinds of graph representing the system
of constraints; they compute the so called degrees of freedom in this graph and
its subgraphs. Technically, graph-based methods compute maximum matching
[23,1,10], or maximum flows [13,12], or k-connected components [17,20,21]. These
methods are polynomial time; they work very well for correct systems of con-
straints, i.e. when constraints are independent. Indeed, graph-based methods al-
low to solve systems of constraints which could not be solved otherwise. Graph-
based methods can also detect the simplest dependences between constraints,
called structural dependences which typically occur when a subset of unknowns
is constrained by too much constraints, as in the system f(x, y, z) = g(z) =
h(z) = 0 which over constrains z.

It is essential to detect dependences because numeric solvers typically fail,
or get bogged down, when they are used to solve systems which are ”wrongly”
assumed to be well-constrained (to have a finite number of roots modulo the
group of isometries). Moreover they do not give any useful explanation to help
the users fix the problem. However, when the system of constraints is available
without any further details, no polynomial time method can detect all depen-
dences. Non structural dependences, which are due to geometric theorems, are
not detectable by the previous methods. These dependences can occur in the
seemingly simplest geometric constraints such as point-line incidences in 2D (in
the projective plane, more technically). In CAD CAM, the major part of systems
of geometric constraints involve such incidence constraints, i.e. incidence rela-
tions between points, lines, planes, circles/spheres, conics/quadrics. Of course,
other constraints are also used to specify angles and lengths for dimensioning;
these metric constraints involve parameters (values for lengths and angles) with
generic values. Incidence constraints are especially relevant; Section 3 shows that
detecting non structural dependences just amongst point-line incidences in 2D is
as difficult as the ideal or radical membership problem of computer algebra. This
problem is decidable with standard bases (also called Grobner bases) computable
with Buchberger’s method [25,4]. But no method to solve it is practicable, i.e.
none scales to problems with industrial size.

This difficulty explains why the GCS (Geometric Constraints Solving) com-
munity usually assumes that constraints are either independent, or structurally
dependent. This inability to detect and treat non structural dependences clearly
restricts the use of GCS. This paper shows that at least for CAD CAM prob-
lems, an alternative method is indeed able to detect all dependences, structural
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or non structural, in polynomial time, assuming that a witness (to be defined
below in Section 2) is available. Moreover, this method can also be used to de-
compose a well-constrained system into smaller well constrained parts, also in
polynomial time. Here, well-constrained means: has a finite number of solutions
modulo some group; the most relevant group for dimensioning a part in CAD
CAM is the group of isometries: all compositions of translations, rotations and
symmetries. For short, a system or a subsystem which is ”well constrained mod-
ulo the isometry group” is said to be rigid in the GCS community (the meaning
of ”rigid” is a bit different in the rigidity theory community which has inspired
several graph-based methods used in GCS).

Section 2 defines the witness configuration, discusses the witness computation,
and presents the probabilistic graph rigidity test of which the witness method
is an offspring. Section 3 explains why detecting all dependences between con-
straints is as hard as the ideal or radical membership problem. Section 4 explains
the rigidity test of the witness method. Section 5 gives the proof that the witness
method detects all dependences, structural as well as non structural. Section 6
presents a possible method to decompose a rigid systems into rigid subsystems.
Section 7 concludes.

2 The Witness Method

2.1 The Witness: Definition and Computation

A witness is defined as follows: let F (U, X) = 0 be the system to be solved; X is
the vector of unknowns, and U is the vector of parameters (lengths, cosines, or
sines, or tangents of angles, etc) or non geometric parameters (Young elasticity
modules, weights, costs, densities, temperatures, forces, etc) [19]. By definition,
the values of parameters are known just before the resolution. The goal is to
find the roots XT of the target system: F (UT , XT ) = 0, where UT are the
specified values for the parameters U . Thus the target is a couple (UT , XT )
so that F (UT , XT ) = 0. A witness is just another couple (UW , XW ) such that
F (UW , XW ) = 0 as well. Usually, UW and UT are different, so a witness root is
likely not a target root; nevertheless, the witness and the target share essential
combinatorial properties e.g. they share the same jacobian rank and structure.
Actually, the witness method assumes that the target and the witness have the
same combinatorial properties, in other words, only their numeric values are
different. This is a probabilistic assumption in the following sense: among all
possible witnesses, i.e. solutions of the system F (U, X) = 0, the set of wrong
witnesses has measure (or probability) zero. A witness is wrong when its combi-
natorial properties (rank and structure of its jacobian) are different from those
of the target. The principle of the witness method is then straightforward: it
studies the combinatorial properties at the witness and transfers them to the
target.

In CAD CAM, a witness is usually available, or easy to find; often the sketch is
a possible witness. A witness is a configuration which fulfils all ”constraints with-
out parameters”. These constraints are projective constraints of linear incidences
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(collinearities, coplanarities) or non linear incidences (”co-conicity” of 6 points
in 2D), parallelisms or orthogonalities (or other non generic angles). In passing,
parallelisms and orthogonalities (and non generic angles) can all be replaced by
projective constraints, see Fig. 1, 2, and 3 for an intuitive account. The set of pos-
sible witnesses is very large: typically it is a continuum with dimension |U | where
|U | is the number of parameters. This explains why, in the CAD CAM context it is
generally easy to find a witness: the sketch, or the solution to a previously solved
system is usually a good witness. However, the witness computation may also be
arbitrarily difficult, We summarize here some cases where the difficulty is known.
For the molecule problem (given some inter atomic distances, find the configura-
tion of the molecule) [9,10,6], finding a witness is completely trivial: just generate
random points in 2D or in 3D according to the nature of the problem. For Eule-
rian polyhedra with specified coplanarities constraints (metric constraints such as
angles between planes, distances between points, are dismissed), finding a witness
is cubic time; it results from a constructive proof of Steinitz’s theorem [22], which
states that each Eulerian polyhedron is realizable in Z

3 with some convex polyhe-
dron, i.e. all vertices coordinates are integers (Steinitz’s property is remarkable,
since it does not hold in 4D [22]). Fewer details are known for non Eulerian poly-
hedra, i.e. with one or several handles.

For general geometric constraints (including incidences), we can often use a
dual method for generating a witness, for instance when the unknown config-
uration is a 3D polyhedron described by the length of its edges. The octahe-
dron problem, solved by Durand and Hoffmann [7], also known as the Stewart
platform, and the icosahedron problem are just molecule problems: they have
triangular faces, so generating random vertices is sufficient; the fact that the gen-
erated polyhedron is likely concave and even self intersecting does not matter
as far as the distance and coplanarity conditions are satisfied. The hexahedron
(6 quadrangular planar faces) or the dodecahedron (12 pentagonal planar faces)
are examples of systems of geometric constraints where the dual method for
generating the witness works: generate random planes in 3D, one random plane
per face, before computing the resulting vertices as intersection points of the
supporting planes. This dual method clearly relies on the fact that each vertex
of the hexahedron and of the dodecahedron is degree 3. For vertices with greater
degree, the method will not work because there is a null probability for four (or
more) random planes to meet in a common point.

2.2 A Forerunner of the Witness Method

The witness method extends a probabilistic test used in rigidity theory [9]. Rigid-
ity theory searches a combinatorial characterization for the rigidity of graphs:
for a given dimension, does a non oriented graph with edges labelled with generic
lengths has a rigid realization in d dimensions? For instance two triangles sharing
a common edge are a rigid graph in 2D, but not in 3D where they can fold along
their common edge. The genericity assumption forbids collinearities, coplanari-
ties in 3D, and non linear incidences (points on conics, or quadrics) which are
essential in CAD CAM.
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The characterization of graph rigidity is known in 2D, after Laman’s theorem:
a graph with v ≥ 2 vertices and e edges is minimally rigid (or isostatic: it is
rigid, and removing one edge makes it flexible) iff e = 2v − 3 and if for all
subgraphs induced by v′ vertices and having e′ edges, e′ ≤ 2v′ − 3. There is an
exponential number of subgraphs, but several polynomial time algorithms have
been proposed to test graph rigidity [18,10].

The intuitive extension to 3D of Laman’s theorem (where 2v − 3 is replaced
by 3v − 6, and 2v′ − 3 is replaced by 3v′ − 6) is unfortunately wrong; the double
banana is the most famous example. Up to now, the combinatorial characteriza-
tion of graph rigidity in 3D and beyond is unknown. For GCS, it is convenient to
extend Laman’s theorem to other kinds of constraints in 2D, and in 3D. It gives
an approximate but essential characterization of rigidity on which graph-based
decomposition methods rely.

Though the combinatorial characterization of graph rigidity is unknown in 3D
and beyond, there is a probabilistic and polynomial time algorithm to decide the
rigidity of a given graph for any given dimension. It relies on Gluck’s theorem: a
graph is rigid if a generic realization of it is. So compute the rank of the jacobian
(called the rigidity matrix) for a random realization. The witness method is an
offspring of this rigidity test; in order to account for any kind of constraints
(and not only point-point distances), the realization can no more be random: a
random realization has probability 0 to fulfil ”constraints without parameters”:
parallelism, orthogonalities, incidences (collinearities, coplanarities).

0 a a+bb

b
a+b

0

a

Fig. 1. Affine and projective construction of a+ b. In the affine construction (left), the
two shaded triangles are congruent and have parallel sides.

From a theoretical viewpoint, the witness method brings nothing new: it does
not give a combinatorial characterization for well-constrainedness modulo the
isometries group. It is a rather straightforward extension of the probabilistic
test for graph rigidity which relies on Gluck theorem.

3 Why Detecting All Dependences Is Difficult

This section explains why a polynomial time method can not detect all de-
pendences in seemingly simple systems of constraints containing only point-line
incidences in 2D.

All systems of algebraic equations with coefficients in Z reduce, in polynomial
time, to a system of point-line incidences in the projective plane [5,2]. The idea
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b

0 abba1

0

1
a

ab

Fig. 2. Affine and projective construction of a × b. In the affine construction, the two
shaded triangles are similar (proportional) and have parallel sides.

is to represent each number (coefficient or root) by a point on an arbitrary line;
this line passes through two arbitrary distinct points, representing the number 0
and the number 1 (later, the projective construction will need a third arbitrary
point on this line, the point at infinity ). Then a first geometric construction in
2D constructs the point representing a + b from the point representing a and
the point representing b , see Fig. 1. A second geometric construction constructs
the point representing a × b from the points representing a and representing b,
see Fig. 2. Actually, a construction in affine geometry is first proposed; it uses
parallelism constraints, which are removed in the projective construction, using
the classical idea of projective geometry: parallel lines are replaced by lines con-
current to a special arbitrary line, the Desargues line at infinity. It is a classical
result that, if the projective plane satisfies Desargues and Pappus properties,
then these two geometric constructions indeed define a field of numbers, i.e. as-
sociativity, commutativity, distributivity, etc hold; for instance the fact that the
point representing a × b is equal to the point b × a relies on Pappus property of
the projective plane [5].

These two constructions permit to translate the algebraic system into a set of
point-line incidences. Remark that the ruler construction of an integer coefficient
n of the system of equations needs O(log2 n) incidence constraints, using iterated

8

0 1 2 4 8

2
1

0

4

x0 21

Fig. 3. Left: geometric construction of powers of 2. Right: affine constraints equivalent
to the equation x2 − 2 = 0.
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squaring and additions (Fig. 3), thus it has the same size as the usual binary
representation of integers. The right part of Fig. 3 shows the set of incidence
and parallelism constraints for the equation x2 − 2 = 0.

Thus solving algebraic systems and solving point-line incidences constraints
are in principle the same problem. So detecting dependences in point-line in-
cidences constraints is as difficult as detecting dependences in algebraic sys-
tems. The latter problem is equivalent to solving the ideal membership problem,
and the radical membership problem (more on this question in section 3). Both
problems are decidable, for instance with standard bases computable with Buch-
berger’s algorithm. Unfortunately, due to the high algorithmic complexity of the
problem, these methods are practicable only for small instances. Another direct
consequence is that, in principle, finding a witness can be arbitrarily difficult: it
suffices to translate a difficult system of equations (e.g. arising from a system
of geometric constraints with specified numerical values for parameters) into a
system of point-line incidences in 2D.

4 The Study of a Witness

This section details the study of the witness. The main idea is to compute
the structure of the jacobian of the system at the witness. For example, if the
jacobian has full rank, then the witness system contains no dependence, and this
property is transferred to the target system.

The kernel of the jacobian at the witness is a vector space of the so called
infinitesimal motions. Classically, there are two kinds of motions: displacements
(also called rigid motions, or isometries), and flexions. Displacements are com-
positions of translations, symmetries, rotations; they constitute the isometry
group; they do not alter distances and angles. On the contrary, flexions do – at
least in the generic case (degenerate cases are not considered in this paper, for
concision).

4.1 Computing a Basis of Infinitesimal Displacements

A system of geometric constraints is rigid iff the kernel of its jacobian contains
only displacements. It is possible to compute an a priori basis of the infinitesimal
displacements. Table 1 shows such a basis, in the 2D case, composed of tx a trans-
lation in the x direction, ty a translation in the y direction, and rxy a rotation
around the origin. (xi, yi) are coordinates of a point, (al, bl, cl) are coordinates of
a line (i.e. the line has equation: alx+ bly + cl = 0), and (uk, vk) are coordinates
of a vector (the difference between 2 points). qj represents an unknown which is
independent of the cartesian frame: it is either a geometric unknown such as a
length, a radius, an area, a scalar product, or a non geometric unknown. Dotted
variables ẋi, ẏi, ȧl, ḃl, ċl, u̇k, v̇k and q̇j are used to denote the values of the cor-
responding coordinates in the basis of infinitesimal displacements, e.g. the couple



Detecting All Dependences in Systems of Geometric Constraints 105

Table 1. A basis for the free displacements in 2D for points, lines, and vectors

ẋi ẏi ȧl ḃl ċl u̇k v̇k q̇j

tx 1 0 0 0 −al 0 0 0
ty 0 1 0 0 −bl 0 0 0
rxy −yi xi −bl al 0 −vk uk 0

(ẋi, ẏi) representing the infinitesimal translation tx along the x axis of a point
(xi, yi) is equal to (1, 0). Note that the infinitesimal displacements for a point
(x, y), a normal (a, b) to a line, and a vector (u, v) are different; e.g. translating
a point modify it, but translating a vector or a normal does not.

Table 2 shows a possible basis for the infinitesimal displacements in 3D; it
contains three translations tx, ty, and tz, and three rotations rxy, rxz and ryz .
Points have coordinates (x, y, z), planes have coordinates (a, b, c, d) (their equa-
tion is: ax + by + cz + d = 0), vectors have coordinates (u, v, w); q represents an
unknown independent of the cartesian frame.

Table 2. A basis for the free displacements in 3D for points, planes, vectors, and
unknowns independent of the cartesian frame

ẋi ẏi żi ȧh ḃh ċh ḋh u̇k v̇k ẇk q̇j

tx 1 0 0 0 0 0 −ah 1 0 0 0
ty 0 1 0 0 0 0 −bh 0 1 0 0
tz 0 0 1 0 0 0 −ch 0 0 1 0
rxy −yi xi 0 −bh ah 0 0 −vk uk 0 0
rxz −zi 0 xi −ch 0 ah 0 −wk 0 uk 0
ryz 0 −zi yi 0 −ch bh 0 0 −wk vk 0

(a’, b’, c’)

(x’, y’)

(x, y) (a, b, c)

Fig. 4. A 2D under-constrained system of geometric constraints

4.2 A Structurally Under-Constrained Example in 2D

Fig. 4 shows a simple under-constrained example in 2D. A possible witness is
(x = y = 0, x′ = 3, y′ = 4, δ = 5, a = 1, b = 0, a′ = 12/13, b′ = 5/13, and λ = 12/13).
All graph-based methods give correct results when considering this system,
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Table 3. The jacobian and a basis of infinitesimal motions: three displacements and a
flexion for the system given in (1)

x y x′ y′ a b c a′ b′ c′

e′1 a b 0 0 x y 1 0 0 0
e′2 a′ b′ 0 0 0 0 0 x y 1
e′3 2(x − x′) 2(y − y′) 2(x′

− x) 2(y′
− y) 0 0 0 0 0 0

e′4 0 0 0 0 2a 2b 0 0 0 0
e′5 0 0 0 0 0 0 0 2a′ 2b′ 0
e′6 0 0 0 0 a′ b′ 0 a b 0

ẋ ẏ ẋ′ ẏ′ ȧ ḃ ċ ȧ′ ḃ′ ċ′

tx 1 0 1 0 0 0 −a 0 0 −a′

ty 0 1 0 1 0 0 −b 0 0 −b′

rxy −y x −y′ x′
−b a 0 −b′ a′ 0

flexion 0 0 y − y′ x′
− x 0 0 0 0 0 0

because the under-constrainedness is structural. This system is composed of the
following six equations:

e1 : ax + by + c = 0
e2 : a′x + b′y + c′ = 0

e3 : (x − x′)2 + (y − y′)2 − δ2 = 0 (1)

e4 : a2 + b2 − 1 = 0

e5 : a′2 + b′2 − 1 = 0
e6 : aa′ + bb′ − λ = 0

The jacobian and a basis of its kernel are given Table 3 where all symbols are
replaced by their values at the witness. This basis contains the 3 displacements
of the plane, plus a flexion vector: indeed point (x′, y′) can rotate around point
(x, y). If columns x′, y′ are removed, the flexion vector clearly becomes, in the
remaining columns: x, y, a, b, c, a′, b′, c′, a linear combination of the 3 displace-
ment vectors (the fact that it vanishes is basis dependent; the fact that it is a
linear combination is not). This shows that the part obtained after the removal
of the point (x′, y′) is rigid. This is the test that the witness method uses to
decide the rigidity of a part.

4.3 A Dependence due to a Theorem

Let us now consider the 2D system of geometric constraints of Fig. 5. This
system is structurally correct, but contains a non structural dependence due to
a (simple) geometric theorem, so it will be difficult (at least) for graph-based
methods to detect this dependence, but the witness method detects it.

Constraints are as follows; point O is the middle of AB; distance OC equals
distance OA; the angle between AC and BC is right. Actually this constraint is
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a consequence of the other constraints. Finally distance OA is specified (just to
have the ”good” number of constraints). The system of equations is:

e1 : 2xO − xA − xB = 0
e2 : 2yO − yA − yB = 0

e3 : (xC − xO)2 + (yC − yO)2 − (xA − xO)2 − (yA − yO)2 = 0 (2)
e4 : (xC − xA)(xC − xB) + (yC − yA)(yC − yB) = 0

e5 : (xA − xO)2 + (yA − yO)2 − u2 = 0

A possible witness is: O = (0, 0), A = (−10, 0), B = (10, 0), C = (6, 8), u = 10.
The jacobian and a basis of the free infinitesimal motions (three displacements
and a flexion: point C can rotate around point O) are given in Table 4, where
again, all symbols are replaced by their value at the witness. The rank of
e′1, . . . , e

′
5 computed at the witness is 4, thus equations are dependent.

C

OB A

Fig. 5. Example of dependent constraints

Table 4. The jacobian, and a basis of 4 free infinitesimal motions for the dependent
system given in (2). The fourth motion is a flexion: point C can rotate around O.

xO yO xA yA xB yB xC yC

e′
1 2 0 −1 0 −1 0 0 0

e′
2 0 2 0 −1 0 −1 0 0

e′
3 2xA − 2xC 2yA − 2yC 2xO − 2xA 2yO − 2yA 0 0 2xC − 2xO 2yC − 2yO

e′
4 0 0 xB − xA yB − yC xA − xC yA − yC 2xC − xA− 2yC − yA−

xB yB

e′
5 2xO − 2xA 2yO − 2yA 2xA − 2xO 2yA − 2yO 0 0 0 0

˙xO ˙yO ˙xA ˙yA ˙xB ˙yB ˙xC ˙yC

tx 1 0 1 0 1 0 1 0
ty 0 1 0 1 0 1 0 1
rxy −yO xO −yA xA −yB xB −yC xC

flexion 0 0 0 0 0 0 yO − yC xC − xO

4.4 Computing Degrees of Displacements

In an attempt to make graph-based methods more robust against non structural
dependences, Jermann introduced the notion of DoD, Degrees of Displacements,
in his PhD thesis (actually he called that the Degree of Rigidity) [16,14]. Consider
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a subset of unknowns Y ⊂ X ; extract the columns of Y in the basis of the
infinitesimal displacements; call it D[Y ]; then the DoD of Y is the rank of this
subarray D[Y ]. For instance, for a 2D line Y = (a, b, c), the subarray D[Y ] is:
(ȧ, ḃ, ċ) = (0, 0, −a) for the translation tx, (0, 0, −b) for the translation ty,
and (−b, a, 0) for the rotation rxy. The line has 2 DoD and the 2 translations
are dependent. Similarly, M [Y ] will denote the content of the columns Y in any
basis of the free infinitesimal motions (displacements, and flexions) of the system
at the witness.

Jermann understood that graph-based methods are fragile because they can
not compute exact DoDs. It turns out that DoD is not only a syntactical or struc-
tural idea when accounting for incidence constraints. For instance, the DoD of
two secant planes in 3D is 5 (more precisely the 3 rotations are independent,
but the 3 translations are dependent; intuitively, and a posteriori, it is under-
standable, since translating the 2 planes along their intersection line leave them
invariant) while the DoD of two parallel planes is 4. Similarly, the DoD of 3
collinear points is 2, while the DoD of 3 non collinear points is 3. A pure graph-
based method has no mean to know if 3 points are collinear or not, or if two planes
are parallel or not. Either it assumes the configuration is generic (and thus has
maximal DoD), or it can try to look if the parallelism/collinearity is an explicit
constraint of the system; but it may happen that the parallelism/collinearity is
a remote consequence of a set of constraints, thanks to Desargues, or Pappus,
or Pascal, or Miquel theorems: the incidence in the conclusion is a non trivial
consequence of the hypothesis.

The witness method avoids this difficulty: it just computes the DoD of the
part, at the witness, with standard method from linear algebra. If a paral-
lelism/collinearity or any other feature holds because of some constraints and
geometric theorems, then it holds in the witness.

A part with full DoD (3 in 2D, 6 in 3D) and with minimal cardinality: 3 in
2D, 6 in 3D, is called an anchor. Section 6 uses anchors for decomposing.

4.5 Interrogating a Witness

Geometric constraints are independent of the cartesian frame. But sometimes,
some constraints such as: x1 = y1 = y2 = 0 are used to ”pin” the configuration in
the plane and to make the system of equations well-constrained, which simplifies
the work of the numerical solver, e.g. Newton-Raphson. The following test checks
that a constraint is independent of the cartesian frame: it is iff its gradient vector
is orthogonal to all basis vectors in the basis of infinitesimal displacements. From
now on, constraints are assumed to be independent of the cartesian frame.

Are constraints independent? They are iff the jacobian at the witness has
full rank. Is a part Y rigid, i.e. well constrained modulo displacements? It is iff
D[Y ] ≡ M [Y ]: the vector space of its infinitesimal motions is equal to the vector
space of its infinitesimal displacements. In other words, since D[Y ] ⊂ M [Y ], the
rank of D[Y ] is equal to the rank of M [Y ].
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4.6 Rank Computations Are All What You Need

All computations of ranks are performed on vectors with numerical entries pro-
vided by the coordinates of the witness and the gradient vectors at the witness.

Inaccuracy issue is detailed elsewhere. We just mention that, if the witness has
rational coordinates, then all computations can be performed exactly, with the
classical Gauss pivoting method; it is also possible to compute exactly modulo a
prime close to 109, which introduces another source of probabilisticity. Finally,
if the witness method is used only to check the independence of vectors, then
an interval arithmetic is sufficient, in the following sense: if a set of vectors is
independent, then interval computations can guarantee it (assuming intervals
are sharp enough); if vectors are dependent, then interval computations can not
prove it. Note that when the interval analysis can not prove the independence of
the gradient vectors at the witness, either vectors are dependent or the system
at the witness is ill-conditioned.

5 The Proof That the Witness Method Detects All
Dependences

An algebraic equation g(x) = 0 is a consequence of the other equations: f1(x) =
f2(x) = . . . fn(xn) = 0 in two cases: either g lies in the ideal generated by
the polynomials f1, . . . fn, or g lies in the radical generated by the polynomials
f1, . . . fn. This section proves that in both cases the witness method detects the
dependence.

Assume first that g lies in the ideal of the polynomials fi, i = 1, . . . n. Then
by definition there are polynomials λ1(x), . . . λn(x) such that g(x) = λ1(x) ×
f1(x) + λ2(x) × f2(x) + . . . λn(x) × fn(x). A first consequence is that g van-
ishes at a common root of the polynomials fi, i = 1, . . . n. A second conse-
quence is obtained by deriving the previous equality: ∇g(x) = ∇λ1(x)f1(x) +
λ1(x)∇f1(x) + . . .∇λn(x)fn(x) + λn(x)∇fn(x). At a common root w of the fi

polynomials, such as the witness, terms fi(w) vanish and it yields ∇g(w) =
λ1(w)∇f1(w) + . . . λn(w)∇fn(w). In other words the gradient vector of g(w) is
a linear combination of the gradient vectors f1(w), . . . fn(w). But the witness
method detects such dependences between the gradient vectors when it studies
the jacobian at the witness w.

Assume now that g does not lie in the ideal, but in the radical of f1, . . . fn. By
definition there is an integer k > 1 and polynomials λ1(x), . . . λn(x) such that
g(x)k = λ1(x)×f1(x)+λ2(x)×f2(x)+. . . λn(x)×fn(x). A first consequence is that
g vanishes at a common root of the polynomials fi, i = 1, . . . n. A second conse-
quence is that, by derivation: kg(x)k−1∇g(x) = ∇λ1(x)f1(x)+λ1(x)∇f1(x)+ . . .
∇λn(x)fn(x) + λn(x)∇fn(x). At a common root w of the fi polynomials,terms
fi(w) vanish and it yields kg(w)k−1∇g(w)=0=λ1(w)∇f1(w)+. . . λn(w)∇fn(w).
It means that the gradient vectors of f1, . . . fn at w are dependent (and g does
not matter in this case). But the witness method detects such dependences be-
tween the gradient vectors when it studies the jacobian at the witness w. Thus, in
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both cases, the witness method detects a dependence between the gradient vectors
of the equations at the witness. The previous proof applies to algebraic systems.
Maybe it is possible to extend it to non algebraic equations (involving transcen-
dentals) with some topological argument.

6 The Witness Method Decomposes into Rigid Parts

Every graph-based method for decomposing the system of geometric constraints
and assembling the solutions of the parts, is two-folds: on one hand it proposes
a strategy to decompose the system, and on the other hand it proposes a test to
decide if a given part is well-, over-, or under-constrained modulo the isometries
group. We saw that, contrary to the witness method, the test can be confused
with some configurations and fail to detect some dependences when they are not
structural. But the strategy can still be used. Thus for each graph-based method
proposed so far to plan the resolution process, it is possible to keep its strategy,
and to replace its rigidity test with the one provided by the witness method.

This section explains one of the possible strategies to decompose a rigid system
into rigid subsystems, maybe the simplest strategy. If the system is flexible, its
Maximal Rigid Parts (MRP) are computed. If it is rigid, each constraint is
removed in turn; it provides a flexible system, the MRP of which are computed.

To find the MRP of a flexible system, its anchors are first determined; an
anchor is a subset Y of d(d + 1)/2 unknowns which has full DoD (3 in 2D, 6 in
3D) and which is rigid, i.e. the vector space of its infinitesimal motions M [Y ] is
equal to the vector space of its infinitesimal displacements D[Y ]. Clearly there is
a polynomial number of potential anchors; just test the rigidity of each potential
anchor. Every anchor Y belongs to exactly one MRP, noted MRP(Y ). MRP(
Y ) is computed with the obvious greedy method: initialize MRP(Y ) with Y ,
consider every variable x ∈ X − Y (in any order) and insert it in MRP(Y ) iff
Y ∪ {x} is still rigid, i.e. iff M [Y ∪ {x}] ≡ D[Y ∪ {x}].

Some book-keeping may speed up the method, and avoid to find several times
the same maximal rigid parts. However the method is polynomial even without
such optimizations: indeed there is a polynomial number of potential anchors,
and each anchor is contained in a single MRP.

7 Conclusion

This paper has shown that the witness method detects all dependences: struc-
tural dependences which are already detected by graph-based methods, but also
non structural dependences which are due to known or unknown geometric the-
orems, and may occur with incidence constraints. The witness method can also
decompose a rigid system into rigid subsystems; actually it is possible to reuse
the strategic part of every graph-based method proposed so far to decompose
rigid systems into rigid irreducible parts with the rigidity test provided by the
witness method. In practice, the witness method should widen the scope of ge-
ometric constraints solving.
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computational approach yielding “good” bases for ideals of polynomials over a
field depending on several parameters, where “good” means that the obtained
bases should specialize (and specialize “well”, for instance, regarding the number
of solutions for the given ideal) for different values of the parameters.

Briefly, in order to understand what kind of problem MCCGS addresses, let
us consider the ideal (ax, x + y)K[a][x, y], where a is taken as a parameter and
K is a field. Then it is clear that there will be, for different values of a = a0 ∈ K,
essentially two different types of bases for the specialized ideal (a0x, x+y)K[x, y].
In fact, for a0 = 0 we will get (x + y) as a Gröbner-basis (in short, a G-basis)
for the specialized ideal; and for any other rational value of a such that a =
a0 �= 0, we will get a G-basis with two elements, (x, y). Thus, the given G-basis
(ax, x + y)K[a, x, y] does not specialize well to a G-basis of every specialized
ideal. On the other hand, let us consider (ax − b)K[a, b][x], where a, b are taken
as free parameters and x is the only variable. Then, no matter which rational
values a0, b0 are assigned to a, b, it happens that {a0x − b0} remains a Gröbner
basis for the ideal (a0x − b0)K[x]. Still, there is a need for a case-distinction if
we focus on the cardinal of the solutions for the specialized ideal. Namely, for
a0 �= 0 there is a unique solution x = −b0/a0; for a0 = 0 and b0 �= 0 there is
no solution at all; and for a0 = b0 = 0 a solution can be any value of x (no
restriction, one degree of freedom).

The goal of MCCGS is to describe, in a compact and canonical form, the dis-
cussion, depending on the different values of the parameters specializing a given
parametric system, of the different basis for the resulting specialized systems
and on their solutions.

The second ingredient of our contribution is about automatic theorem discov-
ery in elementary geometry. Automatic discovery aims to obtain complementary
hypotheses for a (generally false) geometric statement to become true. For in-
stance, we can consider an arbitrary triangle and the feet on each sides of the
three altitudes. These three feet give us another triangle, and now we want to
conclude that such triangle is equilateral. This is generally false, but, under what
extra hypotheses (of equality type) on the given triangle will it become generally
true?

Finding, in an automatic way, the necessary and sufficient conditions for this
statement to become a theorem, is the task of automatic discovery. A proto-
col for automatic discovery is presented in [RV99] and a detailed discussion of
the method appears in [DR]. The protocol proceeds requiring some computa-
tions (contraction, saturation, etc.) about certain ideals built up from the given
statement, but does not state any preference about how to perform such compu-
tations (although the computed examples in both papers rely on straightforward
Gröbner bases computations for ideal elimination).

Our goal in this paper is to show how we can improve the automatic discovery
of geometry theorems, by performing a MCCGS procedure on an ideal built
up from the given hypotheses and theses, considering as parameters the free
coordinates of some elements of the geometric setting,
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C(a, b)

A(−1, 0) B(1, 0)

P3(x3, y3)

P2(x2, y2)

P1(x1, y1)

Fig. 1. Orthic triangle

1.2 Related Work

This idea has a close precedent in the work1 of [CLLW], directly inspired by [K95]
and, to a lesser extent, by [Weis92]. In [CLLW], a parametric radical membership
test is presented for a mathematical construct the authors introduce, called “par-
titioned parametric Gröbner basis” (PPGB). Suppose we are given a statement
H := {h1 = 0, . . . , hr = 0} ⇒ T := {g = 0}, expressed in terms of poly-
nomial equations –usually over some computable field– and their solutions over
some extension field K –that we can assume, in order to simplify the exposition,
to be algebraically closed. Roughly speaking, the method behind [CLLW] starts by
computing the “partitioned basis” (with respect to a given subset of variables, here
denoted by u) of an ideal I ⊆ K[u,x, y], (for instance, I = (h1(u,x) . . . hr(u,x),
g(u,x) y − 1)), ie. a finite collection of couples (Ci, Fi), where the Ci’s are con-
structible sets described as {c1 = 0, . . . , cm = 0, q1 �= 0, . . . , qs �= 0} on the
parameter space, and the Fi’s are some collections of polynomials in K[u,x, y].
Moreover, it is required (among other conditions) that the Ci’s conform a parti-
tion of the parameter space and, also, that for every element u0 in each Ci, the (re-
duced) G-basis of (h1(u0,x) . . . hr, (u0,x), g(u0,x) y − 1) is precisely Fi(u0,x).
It is well known (e.g. [K86] or [Ch88]) that, in this context, a statement {h1 =
0 . . . hr = 0} ⇒ {g = 0} is to be considered true if 1 ∈ (h1 . . . hr, g y − 1); thus,
the extra hypotheses that [CLLW] proposes to add for the statement to become a
theorem are precisely those expressed by any of the Ci’s such that the correspon-
ding Fi = {1}, since this is the only case Fi can specialize to {1}.

We must remark that, simply testing for 1 ∈ (h1 . . . hr, g y − 1), as in the
method above, can yield to theorems that hold just because the hypotheses are
not consistent (i.e. such that already 1 ∈ (h1 . . . hr) ). This cannot happen with
our approach to automatic discovery: if a new statement is discovered, then the
obtained hypotheses will be necessarily consistent.

1 But notice the authors of [CLLW] already mention the paper of Montes [Mo02] as a
predecessor on this particular kind of discussion of Gröbner basis with parameters.
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Although our approach stems from the same basic ideas, our contribution dif-
fers from [CLLW] in some respects: first, we focus on automatic discovery, and
not in automatic proving. Moreover, we are able to specifically describe the capa-
bility and limitations of the method (while in [CLLW] it is only mentioned that,
in the reducible case, their “method . . . cannot determine if the conclusion of the
geometric statement is true on some components of the hypotheses”). Second,
even for proving, the use of MCCGS provides not only the specialization property
(which is the key for the application of partitioned parametric bases in [CLLW])
but also an automatic case distinction, that allows a richer understanding of
the underlying geometry for the considered situation. In fact, it seems that the
partitioned parametric G-Basis (PPGB) algorithm from [CLLW] is close to the
algorithm DISPGB considered in [Mo02], both sharing that their output requires
collecting by hand multiple cases (and then having to manually express in some
simplified way the union of the corresponding conditions on the parameters).
Actually, the motivation for MCCGS was, precisely, improving DISPGB.

Our approach has also an evident connection (since [Weis92] is the common
origin of all posterior developments on parametric Gröbner basis) to the work
of several members of Prof. Weispfenning’s group, regarding generic quantifier
elimination (Q. E.) and its application to automatic theorem proving (as, for
example, in [DG], [DSW], [SS], [St]). In particular we remark the strong relation
of our work with that of [DG], that approaches theorem proving via a restricted
(generically valid) Q.E. method, relying on generic Gröbner systems computa-
tions. The set of restrictions Θ provided by this method, besides speeding up
the Q.E. computations, can be interpreted in the context of theorem proving,
roughly speaking, as a collection of new (sufficient) non-degeneracy conditions
for an statement to hold true.

Again, the difference between our contribution here and theirs is, first, that
we address problems requiring, in general, parameter restrictions that go beyond
“a conjunction Θ of negated equations in the parameters” ([DG], first paragraph
in Section 3). That is, we deal with formulas that are almost always false (see
below for a more detailed explanation of the difference between automatic deriva-
tion and automatic discovery) and require non-negated (ie. equality) parameter
restrictions; they can not be directly approached via generic Q.E. since our for-
mulas are, quite often, generically false. Moreover, our approach is limited to
this specific kind of generically false problems and we do not intend to provide
a general method for Q.E. A second difference is that, for our very particular
kind of problems, MCCGS formulates parameter restrictions in a compact and
canonical way, a goal that is not specifically intended concerning the description
of Θ in [DG]. For these reasons we can not include performance comparisons to
these Q.E. methods and we do not consider relevant (although we provide some
basic information) giving hardware details, computing times, etc. on the perfor-
mance of our method running on the examples described in the last section of
this paper. We are not proposing something better, but something different in a
different context.
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Next Section includes a short introduction to the basics on automatic discov-
ery, which could be of interest even for automatic proving practitioners. Section
3 provides some bibliographic references for the problem of the G-basis special-
ization and summarizes the main features of the MCCGS algorithm, including
an example of its output. Section 4 describes the application of MCCGS to auto-
matic discovery, while Section 5 works in detail a collection of curious examples,
including the solution of a pastime from Le Monde and the simpler solution (via
this new method) of one example also solved by a more traditional method.

2 A Digest on Automatic Discovery

Although less popular than automatic proving, automatic discovery of elemen-
tary geometry theorems is not new. It can be traced back to the work of Chou
(see [Ch84], [Ch87] and [ChG90]), regarding the “automatic derivation of for-
mulas”, a particular variant of automatic discovery where the goal consists in
deriving results that always occur under some given hypotheses but that can be
formulated in terms of some specific set of variables (such as expressing the area
of a triangle in terms of the lengths of its sides). Finding the geometric locus of
a point defined through some geometric constraints (say, finding the locus of a
point when its projection on the three sides of a given triangle form a triangle of
given constant area [Ch88], Example 5.8) can be considered as another variant
of this “automatic derivation” approach.

Although “automatic derivation” (or locus finding) aims to discover some new
geometric statements (without modifying the given hypotheses), it is not exactly
the same as “automatic discovery” (in the sense we have presented it in the
previous section), that searches for complementary hypotheses for a (generally
false) geometric statement to become true (such as stating that the three feet
of the altitudes for a given triangle form an equilateral triangle and finding
what kind of triangles verify it). Again, automatic discovery in this precise sense
appears in the early work of Chou (whose thesis [Ch85] deals with “Proving and
discovering theorems in elementary geometries using Wu’s method”) and Kapur
[K89] (where it is explicitly stated that “. . . the objective here is to find the
missing hypotheses so that a given conclusion follows from a given incomplete
set of hypotheses. . . ”).

Further specific contributions to automatic discovery appear in [Wa98], [R98]
(a book written in Spanish for secondary education teachers, with circa one
hundred pages devoted to this topic and with many worked out examples),
[RV99], [Ko] or [CW]. Examples of automatic derivation, locus finding and dis-
covery, achieved through a specific software named GDI (the initials of Geometŕıa
Dinámica Inteligente), of Botana-Valcarce, appear in [BR05] or [RB] (and the
references thereof), such as the automatic derivation of the thesis for the cele-
brated Maclane 83-Theorem, or the automatic answer to some items on a test
posed by Richard [Ri], on proof strategies in mathematics courses, for students
14-16 years old.



118 A. Montes and T. Recio

The simple idea behind the different approaches is2, essentially, that of adding
the conjectural theses to the collection of hypotheses, and then deriving, from
this new ideal of theses plus hypotheses, some new constraints in terms of the
free parameters ruling the geometric situation. For a toy example, consider that
x − a = 0 is the only hypothesis, that the set of points (x, a) in this hypothesis
variety is determined by the value of the parameter a, and that x = 0 is the
(generally false) thesis. Then we add the thesis to the hypothesis, getting the new
ideal (x − a, x), and we observe that the elimination of x in this ideal yields the
constraint a = 0, which is indeed the extra hypothesis we have to add to the given
one x−a = 0, in order to have a correct statement [x−a = 0∧a = 0] ⇒ [x = 0].

With this simple idea as starting point3, an elaborated discovery procedure,
with several non trivial examples, is presented in [RV99]. It has been recently
revised in [BDR] and [DR], showing that, in some precise sense, the idea of
considering H + T for discovering is intrinsically unique (see Section 4 for a
short introduction, leading to the use of MCCGS in this context).

3 Overwiew on the MCCGS Algorithm

As mentioned in the introduction, specializing the basis of an ideal with param-
eters does not yield, in general, a basis of the specialized ideal.

This phenomenon –in the context of Gröbner basis– has been known for over
fifteen years now, yielding to a rich variety of attempts towards a solution (we
refer the interested reader to the bibliographic references in [MaMo06] or in
[Wib06]). Finding a specializable basis (ie. providing a single basis that collects
all possible bases, together with the corresponding relations among the parame-
ters) is –more or less– the task of the different comprehensive G-Basis proposals.
Although the first global solution was that of Weispfenning, as early as 1992
(see [Weis92]), the topic is quite active nowadays, as exemplified in the above
quoted recent papers. The MCCGS procedure, that is, computing the minimal
canonical comprehensive Gröbner system of a given parametric ideal, is one of
the approaches we are interested in. Let us describe briefly the goals and output
of the MCCGS algorithm.
2 Already present in the well known book of [Ch88], page 72: “. . . The method developed

here can be modified for the purpose of finding new geometry theorems. . . Suppose
that we are trying to prove a theorem. . . and the final remainder. . . R0 is nonzero. If
we add a new hypotheses R0 = 0, then we have a theorem. . . ”. Here Chou proposes
adding as new hypotheses the pseudoremainder of the thesis by the ideal of hypotheses,
a mathematical object which should be zero if the theorem was generally true.

3 Indeed, things are not so trivial. Consider, for instance, H ⇒ T , where H = (a +
1)(a + 2)(b + 1) ⊂ K[a, b, c] and T = (a + b + 1, c) ⊂ K[a, b, c]. Take as parameters
U = {b, c}, a set of dim(H)-variables, independent over H . Then the elimination
of the remaining variables over H + T yields H ′ = (c, b3 − b). But H + H ′ =
(a +1, b, c) ∩ (a+ 2, b, c) ∩ (a + 1, b − 1, c) ∩ (a + 2, b − 1, c) ∩ (b + 1, c) does not imply
T , even if we add some non-degeneracy conditions expressed in terms of the free
parameters U , since T vanishes over some components, such as (a + 2, b − 1, c) (and
does not vanish over some other ones, such as (a + 1, b − 1, c)).
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Given a parametric polynomial system of equations over some computable
field, such as the rational numbers, our interest focuses on discussing the type of
solutions over some algebraically closed extension, such as the complex numbers,
depending on the values of the parameters. Let x = (x1, . . . , xn) be the set of
variables, u = (u1, . . . , um) the set of parameters and I ⊂ K[u][x] the parametric
ideal we want to discuss, where, in order to simplify the exposition, a single field
K, algebraically closed, is considered both for the coefficients and the solutions.
We want to study how the solutions over Kn of the equation system defined
by I vary when we specialize the values of the parameters u to concrete values
u0 ∈ K. Denote by A = K[u], and by σu0 : A[x] → K[x] the homomorphism
corresponding to the specialization (substitution of u by some u0 ∈ K).

A Gröbner System GS(I, 	x) of the ideal I ⊂ A[x] wrt (with respect to)
the termorder 	x is a set of pairs (Si, Bi), where each couple consists of a
constructible set (called segment) and of a collection of polynomials, such that

GS(I, 	x) = {(Si, Bi) : 1 ≤ i ≤ s, Si ⊂ Km, Bi ⊂ A[x],
⋃

i Si = Km,
∀u0 ∈ Si, σu0(Bi) is a Gröbner basis of σu0(I) wrt 	x}.

The algorithm MCCGS (Minimal Canonical Comprehensive Gröbner System)
[Mo06],[MaMo06] of the ideal I ⊂ A[x] wrt the monomial order 	x for the
variables, builds up the unique Gröbner System having the following properties:

1. The segments Si form a partition S = {S1, . . . , Ss} of the parameter space
Km.

2. The polynomials in Bi are normalized to have content 1 wrt x over K[u]
(in order to work with polynomials instead of with rational functions). The
Bi specialize to the reduced Gröbner basis of σu0(I), keeping the same lpp
(leading power products set) for each u0 ∈ Si, i.e. the leading coefficients
are different from zero on every point of Si. 4. Thus a concrete set of lpp can
be associated to a given Si. Often it exists a unique segment corresponding
to each particular lpp, although in some cases several such segments can
occur. In any case, when a segment with the reduced basis [1] exists, then it
is unique. When two segments Si, Sj share the same lpp, then there is not a
common reduced basis B specializing to both Bi, Bj

5.
Moreover, there exists a unique segment S1 (called the generic segment),

containing a Zariski-open set, whose associated basis B1 is called the generic
basis and coincides with the Gröbner basis of I considered in K(u)[x] con-
veniently normalized without denominators and content 1 wrt x.

3. The partition S is canonical (unique for a given I and monomial order).
4. The partition is minimal, in the sense it does not exists another partition

having property 2 with less sets Si.
5. The segments Si are described in a canonical form.

4 The polynomials in the Bi’s are not faithful (they do not belong to I), as they are
reduced wrt to the null conditions in Si. By abuse of language we call them reduced
bases (i.e. not-faithful, in the terminology of Weispfenning).

5 M. Wibmer [Wib06] has proved that for homogeneous ideals in the projective space
there is at most a unique reduced basis and segment corresponding to a given lpp.
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As it is known, the lpp of the reduced Gröbner basis of an ideal determine
the cardinal or dimension of the solution set over an algebraically closed field.
This makes the MCCGS algorithm very useful for applications as it identifies
canonically the different kind of solutions for every value of the parameters. This
is particularly suitable for automatic theorem proving and automatic theorem
predicting, as we will show in the following sections.

Let us give an example of the output of MCCGS.

Example 1. Consider the system described by the following parametric ideal
(here the parameters are a, b, c, d):

I = (x2 + by2 + 2cxy + 2dx, 2x + 2cy + 2d, 2by + 2cx),

arising in the context of finding all possible singular conics and their singular-
ities. Calling to the Maple implementation of MCCGS yields a graphical and
an algebraic output. The graphical output is shown in Figure 2. It contains the
basic information that is to be read as follows. At the root there is the given
ideal (in red). The second level (also in red) contains the lpp of the bases of
the three different possible cases. These are [1], corresponding to the no solution
(no singular points) case; [x, y], corresponding to the one solution (one singular
point) case; and [x], corresponding to the case of one dimensional solution (ie.
when the conic is a double line). Below each case there is a subtree (in blue)
describing the corresponding Si, with the following conventions:

– at the nodes there are ideals of K[u], prime in the field of definition (gen-
erated over the prime field by the coefficients of a reduced G-Basis) of the
given ideal I ⊂ A[x]

– a descending edge means the set theoretic “difference” of the set defined by
the node above minus the set defined at the node below,

– nodes at the same level, hanging from a common node, are to be interpreted
as yielding the set theoretic “union” of the corresponding sets; they form the
irredundant prime decomposition of a radical ideal of K[u].

– every branch contains a strictly ascending chain of prime ideals.

So, in the example above, the three cases, their lpp and the corresponding
Si’s are to be read as shown in the following table:

lpp Basis Bi Description of Si

[1] [1] K3 \ ((V(b) \ (V(c, b) \ V(d, c, b))) ∪ V(d))
[y, x] [2cy + d, x] (V(b) \ V(c, b)) ∪

(
V(d) \ V(d, b − c2)

)

[x] [x + cy] V(d, b − c2)

We remark that the Bi’s do not appear in the Figure 2, since –in order to
simplify the display– the complete bases are only given by the algebraic output
of MCCGS and are not shown by the graphic output.
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[d, c, b]

[c, b]

[1][d, b-c^2][c, b][d][b]

[d, b-c^2][d][b][]

[x][y, x][1]

[2*b*y+2*c*x, 2*x+2*c*y+d, x^2+b*y^2+2*c*x*y+d*x]

Fig. 2. MCCGS for the singular points of a conic

4 Using MCCGS for Automatic Theorem Discovering

Once we have briefly described the context for MCCGS and for automatic dis-
covery, we are prepared to describe the basic idea in this paper. We can say
that our goal is to show how performing a MCCGS procedure can improve the
automatic discovery of geometry theorems.

Example 1 can be seen as a very simple example of theorem discovering. We
could formulate the statement a conic has one singular point and try to find the
conditions for the statement to be true. Without loss of generality we express
the equation of the conic and its partial derivatives as

I = (x2 + by2 + 2cxy + 2dx, 2x + 2cy + 2d, 2by + 2cx),

and search for the values of the parameters where this system has a single so-
lution. As shown above, we have found that the statement is true if and only if
{b = 0, c �= 0} or if {d = 0, b − c2 �= 0}, since in the first segment of the table
there is no solution (B1 = (1)), while the third segment yields a 1-dimensional
set of solutions.

In general, let H ⇒ T be a statement expressed in terms of polynomial
equations, where the ideals H, T ⊆ K[x1, . . . , xn] will be the corresponding
hypotheses ideal and theses ideal (both, possibly, with several generators). In
this context [DR] sets, as discovery goal, finding a couple of subsets of variables
U ⊇ U ′, with X ⊇ U ⊇ U ′, and a couple of ideals R′ ⊂ K[U ], R′′ ⊂ K[U ′],
so that the following properties hold for the associated algebraic varieties (over
Kn, with K algebraically closed):

1. V(H + R′e)\V(R′′e) ⊆ V(T ) (where the e stands for the extension of the
ideal from its defining ring, say, K[U ] or K[U ′], to K[X ]);

2. V(H + T ) ⊆ V(R′e);
3. V(H + R′e)\V(R′′e) �= ∅.
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The rationale behind such a definition is that such a couple (R′, R′′) is sup-
posed to provide

– some necessary (as expressed by item 2) above)
– and sufficient (as expressed by item 1) above)

non trivial (as expressed by item 3) ) complementary conditions of equality kind
(given by R′ ) and of non-degeneracy type (given by the negation of R′′) for the
given theses to hold under the given hypotheses.

Then it is shown in [DR] that, for a given couple of subsets of variables
U ⊇ U ′, with X ⊇ U ⊇ U ′, there is a couple of ideals R′ ⊂ K[U ], R′′ ⊂ K[U ′]
verifying properties 1), 2) and 3) above if and only if the couple of ideals H ′ =
(H + T ) ∩ K[U ] and6 H ′′ = ((H + H ′e) : T∞) ∩ K[U ′] also verify these three
conditions. Moreover, Theorem 2 in [DR] shows these conditions hold if and
only if 1 �∈ (H ′)c : H ′′∞ (equivalently, iff H ′′ �⊆

√
(H ′)c), where c stands for the

contraction ideal, so there is an algorithmic way of solving the posed discovery
problem for a given statement and choice of variables.

Now we remark the following:

Proposition 1. If there is a couple R′, R′′ verifying the above conditions, then

V(H + R′e)\V(R′′e) = V(H + H ′e)\V(R′′e)

Proof. First notice that V(H +H ′e) ⊆ V(H +R′e), since, by property 2), V(H +
T ) ⊆ V(R′e), thus R′e ⊆

√
H + T and so R′ = R′ec ⊆

√
H + T

c
=

√
H ′ and this

implies that V(H ′e) ⊆ V(R′e).
Moreover, we have also that V(H + R′e)\V(R′′e) ⊆ V(T ) ∩ V(H), by prop-

erty 1), and V(T ) ∩ V(H) ⊆ V(H ′e), where the last inclusion follows from the
definition of H ′e. We conclude that V(H + R′e)\V(R′′e) ⊆ V(H + H ′e)\V(R′′e).

This means that the search for candidates R′ for complementary hypotheses
of equality type, can be reduced to computing V(H ′). This is, precisely, the
(Zariski closure of the) projection, over the parameter space of the U -variables,
of V(H +T ), and this can be computed through MCCGS, providing as well some
other useful information (as in Corollary 1).

Proposition 2. The projection of V(H + T ) over the U -variables can be com-
puted by performing a MCCGS for I = H+T and X ⊃ U , discarding, if it exists,
the unique segment Si’s with Bi equal to 1 and keeping the remaining Si’s.

Proof. Since the segments of a MCCGS partition the parameter space U , it is
enough to show that a point (u0) is not in the projection if and only if it belongs
to the Si with associated Bi = 1. Now we recall that a reduced Gröbner basis is
1 if and only if the corresponding ideal is (1). Then, the ideal H + T specialized
at u0 will be (1) if and only if its reduced G-basis is 1. Since we work over an
algebraically closed field, this is the only case the system H+T , specialized at u0,
6 Let I, J be ideals of K[X]. Recall that I : J = {x, xJ ⊂ I}. Then, the saturation of

I by J is defined as I : J∞ = ∪n(I : Jn), cf. [KR00].
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has no solution, ie. u0 is not in the projection of V(H +T ). But, by construction,
a Bi specializes to 1 if and only if Bi = 1 (since the specialization must be a
reduced G-basis and has the same lpp as Bi).

Corollary 1. The union of these Si’s with associated Bi �= 1 (ie. the com-
plement of the only possible segment with Bi = 1) partitions the projection of
V(H +T ); that is, it holds H ∧T ⇒ {∪Si}. Thus, the union of these Si’s provide
complementary necessary conditions for the theses T to hold over H.

We will see below (Remark 2) that, when the given statement does not hold over
any geometrically meaningful component of the hypotheses variety – ie. in the
automatic discovery situation– the segment with Bi = 1 is the generic one, so
its complement provides necessary conditions for the theses T to hold over H .

Next we must study if some of these Si’s provide sufficient conditions, ana-
lyzing the behavior of each statement H ∧ Si ⇒ T , for every segment Si with
lpp �= 1. Some –perhaps all, perhaps none– of them could be true. Remark
that, anyway, H ∧ Si �= ∅, since the associated basis in not 1. Remark, also,
that MCCGS allows to obtain supplementary conditions Si of the more general
form (not every constructible set is the difference of two closed sets of the form
V(H + R′e)\V(R′′e), as in the previous approach).

There are some special easy cases, as shown in the next result.

Corollary 2. For every segment Si such that the corresponding lpp of the as-
sociated basis is, precisely, the collection of variables {x1, . . . , xn}, we have that
V(H) ∩ Si ⊆ V(T ), ie. H ∧ Si ⇒ T holds, and Si provides sufficient conditions
for T to hold over H.

Proof. In fact, the condition on the associated lpp means that for every u0 in
Si, the system H(u0, x) = 0, T (u0, x) = 0 has a unique solution, and it belongs
to V(T ). Thus V(H) ∩ Si ⊆ V(T ).

Otherwise, we should analyze, for each i with Si involved in the projection of
V(H + T ), the validity of H ∧ Si ⇒ T . This is a straightforward “automatic
proving” step, and not of “automatic discovery”, since adding again T to the
collection of hypotheses H ∧ Si will not change the situation, as the projection
of V(H) ∩ V(T ) ∩ Si equals the projection of V(H) ∩ Si, both being Si.

Yet, MCCGS can provide a method for checking the truth of such statement
H ∧Si ⇒ T . As it is well known, we can reformulate the hypotheses H ∧Si as a
collection of equality hypotheses H , since Si is constructible and, then, the union
of intersections of closed and open sets (in the Zariski topology). And open sets
can be expressed through equalities by means of saturation techniques (such as
x �= 0 ⇔ xy − 1 = 0, etc.). So let us state the following propositions (adapting
to the MCCGS context some results from [RV99], [DR]) in all generality.

Proposition 3. Let H ⇒ T be a statement and let U be a collection of variables
independent for H. Then T vanishes identically on all the components of H where
U remain independent if and only if, performing a MCCGS for {H, Tz−1} with
respect to U , the generic basis is 1.
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Proof. Notice the stated condition on the segments of the MCCGS is equivalent
to the fact that the contraction (H, Tz−1)∩K[U ] �= (0). In fact, this contraction
is zero if and only if the projection of V(H + (Tz − 1)) contains an open set.
And this is equivalent to the fact that the generic segment has lpp �= 1.

Now, if (H, Tz − 1) ∩ K[U ] �= (0), take some 0 �= g ∈ (H, Tz − 1) ∩ K[U ].
Remark that, by construction, g T = 0 over V(H). If T �= 0 at some point over
some component of V(H), then g = 0 over such component; so it cannot be a
component where the U are independent, since g ∈ K[U ].

Conversely, if T vanishes identically over all the independent components, then
we can compute an element g ∈ K[U ] vanishing over the remaining components
(because U ′ is dependent over them). So g T vanishes all over V(H), and thus
(H, Tz − 1) ∩ K[U ′] �= (0).

Remark 1. In fact, as in [CLLW], it is easy to show that the segment with
associated lpp equal to 1 provides complementary sufficient conditions for H ⇒ T
to hold. In fact, for every u0 in such segment, V(H(u0,x), T (u0,x)z − 1) = ∅,
so V(H(u0,x) ⊆ T (u0,x). But it can happen there is no such segment.

Proposition 4. Let H ⇒ T be a statement and let U be a collection of vari-
ables independent for H and of dimension equal to dim(H). Then T vanishes
identically on some components of H where U remains independent if and only
if, performing a MCCGS for {H, T } with respect to U , the reduced basis of the
generic segment is different from 1.

Proof. As above, the stated condition on the segments of the MCCGS is equiv-
alent to the fact that the contraction (H, T ) ∩ K[U ′] = (0).

Now, if T does not vanish identically over any component of V(H) indepen-
dent over U ′, the projection of V(H, T ) over U will be a proper closed subset
(since the dimension of the projection is less or equal than the dimension of the
components of V(H) contained in V(T ), the maximum dimension of all compo-
nents of V(H) equals the maximum dimension of the independent components,
and the dimension of the U -space equals the maximum dimension of the com-
ponents of V(H)). This contradicts the assumption (H, T ) ∩ K[U ] = (0), which
implies the closure of the projection is the whole U -space.

Conversely, if T vanishes identically over some independent component (say,
C) and (H, T ) ∩ K[U ] �= (0), then we can choose an element 0 �= g ∈ (H, T ) ∩
K[U ]. This element vanishes over any component of V(H) where T vanishes, in
particular over C, contradicting its independence over U .

Remark 2. The last proposition can be also read in a different way: T does not
vanish identically on any independent component of H if and only if the reduced
basis of the generic segment is 1.

Corollary 3. Let H ⇒ T be a statement and let U be a collection of vari-
ables independent for H and of dimension equal to dim(H). Then T vanishes
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identically on some components of H where U remains independent and also T
does not vanish identically on some other components of H where U remains
independent if and only if

– performing a MCCGS for {H, Tz−1} with respect to U , the generic segment
dos not have reduced basis 1, and

– performing a MCCGS for {H, T } with respect to U , the reduced basis of the
generic segment is also different from 1.

In conclusion, using MCCGS one can determine, for a given statement, whether it
is generally true (over all independent components, using Proposition 3, generally
false (over all independent components, using Remark 2), or partially true and
false (using Corollary 3). Let us call this last situation the “undecidable” case.

In fact, unfortunately, in this circumstance it is not possible, using only data on
the U variables, to determine the components of H where T vanishes identically.
Consider H = b(b + 1) ⊆ K[a, b], T = (b) and take U = {a}. Here the projec-
tion of V(H, Tz − 1) over the U -variables is the whole a-line, so does not have any
segment with lpp equal to 1, and we know the thesis does not hold over all inde-
pendent components. Moreover the projection of V(H + T ) over the U -space is
again the whole a-line, so there is no segment with lpp 1, and we can conclude T
holds over a component, but there is no way of separating the component b = 0,
by manipulating H, T in terms of polynomials in the variable a.

This discussion applies to the situation described above, when considering
statements H ∧ Si ⇒ T , where segment Si belongs to a MCCGS for {H, T }
with respect to a collection U of variables and has lpp �= 1. Let HH be the
reformulation of H ∧ Si in terms of equalities and let (if possible) U ′ ⊆ U be
a new collection of variables, such that they are independent for HH and of
dimension equal to dim(HH).

Then, as remarked above, HH ⇒ T will be true on the segment SSi of a
MCCGS with respect to HH, Tz − 1, with lpp 1. If it is is an open segment,
then the statement H ∧ Si ⇒ T will be generally true (over all the components
independent over U ′). If it is not open segment, but there is at least one such
segment, the statement will hold true under the new restrictions.

But if there is no segment at all with lpp = 1, then and only then we are in the
undecidable case. In fact, over all points in the U ′-projection of V(HH, Tz−1) we
will have points of V(H) not in V(T ) (because all the segments will have lpp �= 1
in the MCCGS for HH, Tz − 1) and also points of V(H) and V(T ) (since we are
also in the projection of Si over U ′, and Si corresponds to a segment of lpp �= 1
for a MCCGS with respect to H, T ).

In this case, since the projection over U ′ of V(HH, T ) will be same as the
projection of V(HH) (both being equal to the projection of Si), it is of no use
to go further with a new discovery procedure, computing a MCCSG for HH, T
over U ′. We know beforehand that all its segments will have lpp �= 1, since over
any point in the projection of Si there will be always points on V(HH) ∩ V(T ),
confirming, again, that we are in the undecidable situation.
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5 Examples

Let us see how this works in a collection of examples, where we have just de-
tailed the discovery step (ie. computing the MCCGS of {H, T } with respect to
a collection of maximal independent variables for H , and then collecting the
potentially true statements H ∧ Si ⇒ T , where segment Si has lpp �= 1) in the
procedure outlined in the previous Section. That is, we have not included here
the formal automatic verification in each case that the newly found hypotheses
actually lead to a true statement (the “proving step”).

Example 2. (See also [DR]). Next, we will develop the above introduced notions
considering a statement from [Ch88] (Example 91 in his book), suitably adapted
to the discovery framework. The example here is taken from [DR].

Let us consider as given data a circle and two diametral opposed points on it
(say, take a circle centered at (1, 0) with radius 1, and let C = (0, 0), D = (2, 0)
the two ends of a diameter), plus an arbitrary point A = (u1, u2). See Figure 3.
Then trace a tangent from A to the circle and let E = (x1, x2) be the tangency
point. Let F = (x3, x4) be the intersection of DE and CA. Then we claim that
AE = AF . Moreover, in order to be able to define the lines DE, CA, we require,
as hypotheses, that D �= E (ie. u1 �= 2) and that C �= A (ie. u1 �= 0 or u2 �= 0).

A

E

F

C
D

Fig. 3. Problem of Example 2

Now, using CoCoA [CNR99] and its package TP (for Theorem Proving), we
translate the given situation as follows

Alias TP := $contrib/thmproving;

Use R::=Q[x[1..4],u[1..2]];
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A:=[u[1],u[2]];
E:=[x[1],x[2]];
D:=[2,0];
F:=[x[3],x[4]];
C:=[0,0];

Ip1:=TP.Perpendicular([E,A],[E,[1,0]]);
Ip2:=TP.LenSquare([E,[1,0]])-1;
Ip3:=TP.Collinear([0,0],A,F);
Ip4:=TP.Collinear(D,E,F);

H:=Saturation(Ideal(Ip1,Ip2,Ip3,Ip4),Ideal(u[1]-2)*
Ideal(u[1], u[2]));

T:=Ideal(TP.LenSquare([A,E])-TP.LenSquare([A,F]));

where T is the thesis and H describes the hypothesis ideal. Notice that Ip1
expresses that the segments [E, A], [E, (1, 0)] are perpendicular; Ip2 states that
the square of the length of [E, (1, 0)] is 1 ( so Ip1, Ip2 imply E is the tangency
point from A ); and the next two hypotheses express that the corresponding
three points are collinear. The hypothesis ideal H is here constructed by using
the saturation command, since it is a standard way of stating that the hypothesis
variety is the (Zariski) closure of the set defined by all the conditions Ip[i] =
0, i = 1 . . . 4 minus the union {u[1] = 2} ∪ {u[1] = 0, u[2] = 0}, as declared in
the formulation of this example (but we refer to [DR] for a discussion on the
two possible ways of introducing inequalities as hypotheses). Finally, the thesis
expresses that the two segments [AE], [AF ] have equal non oriented length.

Now, let us use in this, clearly false, statement the approach of [RV99] or [DR]
to discovery. First we check that the statement H → T is not algebraically true
in any conceivable way. For instance, it turns that

Saturation(H, Saturation(H,T));
Ideal(1)
-------------------------------

and this computation shows that all possible non-degeneracy conditions (those
polynomials p(u,x) that could be added to the hypotheses as conditions of the
kind p(u,x) �= 0) lie in the hypotheses ideal, yielding, therefore to an empty set
of conditions of the kind p �= 0∧p = 0. This implies, in particular, that the same
negative result would be obtained if we restrict the computations to some subset
of variables, since the thesis does not vanish on any irreducible component of
the hypotheses variety.

Thus we must switch on to the discovery protocol, checking before hand that
u[1], u[2] actually is a (maximal) set of independent variables –the parameters–
for our construction:

Dim(R/H);
2
-------------------------------
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Elim([x[1],x[2],x[3],x[4]],H);
Ideal(0)
-------------------------------

Then we add the thesis to the hypotheses ideal and we eliminate all variables
except u[1], u[2]

H’:=Elim([x[1],x[2],x[3],x[4]],H+T);
H’;
Ideal(-1/2u[1]^5 - 1/2u[1]^3u[2]^2 + u[1]^4)
-------------------------------
Factor(-1/2u[1]^5 - 1/2u[1]^3u[2]^2 + u[1]^4);
[[u[1]^2 + u[2]^2 - 2u[1], 1], [u[1], 3], [-1/2, 1]]
-------------------------------

yielding as complementary hypotheses the conditions u[1]2 + u[2]2 − 2u[1] =
0 ∨ u[1] = 0 that can be interpreted by saying that either point A lies on the
given circle or (when u[1] = 0) triangle Δ(A, C, D) is rectangle at C. In the
next step of the discovery procedure we consider as new hypotheses ideal the set
H + H ′, which is of dimension 1 and where both u[2] or u[1] can be taken as
independent variables ruling the new construction.

Dim(R/(H+H’));
1
-------------------------------
Elim([x[1],x[2],x[3],x[4],u[1]],H+H’);
Ideal(0)
-------------------------------
Elim([x[1],x[2],x[3],x[4],u[2]],H+H’);
Ideal(0)

Choosing, for example, u[2] as relevant variable, we check –applying the usual
automatic proving scheme– that the new statement H ∧H ′ → T is correct under
the non-degeneracy condition u[2] �= 0:

H’’:=Elim([x[1],x[2],x[3],x[4],u[1]], Saturation(H+H’,T));
H’’;
Ideal(u[2]^3)
--------------------------------

Thus we have arrived to the following statement: Given a circle of radius 1 and
centered at (1, 0), and a point A not in the X-axis and lying either on the Y axis
or in the circle, it holds that the segments AE, AF (where E is a tangency point
from A to the circle and F is the intersection of the lines passing by (2, 0), E
and A, (0, 0)) are of equal length.

Let us now review Example 2 using MCCGS. As above, the hypotheses are
the union of H := H1 ∪ S, where H1 expresses the equality type constraints:

H1 = [(x1 − 1)(u1 − x1) + x2(u2 − x2), (x1 − 1)2 + x2
2 − 1,

u1x4 − u2x3, x3x2 − x4x1 − 2x2 + 2x4]
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to which we have to add the saturation ideal expressing the inequality con-
straints:

S = [u1x4 − u2x3, x1u1 − u1 − x1 + x2u2, x4x2 − 2x2u2 − x3u1 + 2u1,
x4x1 − 2x1u2 + u2x3, x3x2 − 2x1u2 + u2x3 − 2x2 + 2x4,
x1x3 + x3u1 + 2x2u2 − 2x1 − 2u1, x

2
1 − 2x1 + x2

2,
x3u

2
1 + 2x2u2u1 − 2u2

2x1 + u2
2x3 − 2u2

1 − 2x2u2 + 2u2x4,
x2

3u1 + x4u2x3 + 2x2
4 − 4x3u1 − 4u2x4 + 4u1,

u1x
2
2 − x1x2u2 − x2

2 + x2u2 + x1 − u1,
u2x

3
3 + u2x

2
4x3 + 2x3

4 − 4u2x
2
3 − 4u2x

2
4 + 4u2x3].

The thesis is

T = (u1 − x1)2 + (u2 − x2)2 − (u1 − x3)2 − (u2 − x4)2.

Calling now mccgs(H1 ∪ S ∪ T, lex(x1, x2, x3, x4), lex(u1, u2)) one obtains the
following segments:

Segment lpp Description of Si

1 [1] K2 \ (V(u2
1 + u2

2 − 2u1) ∪ V(u1))
2 [x2

4, x3, x2, x1] V(u2
1 + u2

2 − 2u1) \ (V(u1 − 2, u2) ∪ V(u1, u2))
3 [x2

4, x3, x2, x1] V(u1) \ (V(u1, u
2
2 + 1) ∪ V(u1, u2))

4 [x4, x3, x2, x1] V(u1, u
2
2 + 1)

5 [x2
4, x3, x

2
2, x1] V(u1 − 2, u2)

6 [x2
4, x

2
3, x2, x1] V(u2, u1)

Segment S1 states that point A(u1, u2) must lie either in the Y -axis or on
the circle, as a necessary condition in the parameter space u = (u1, u2) for the
existence of solutions, in the hypotheses plus thesis variety, lying over u. This
essentially agrees with the result obtained in [DR].

A detailed analysis of the remaining segments show a variety of formulas for
determining the (sometimes not unique) values of points E(x1, x2) and F (x3, x4)
–verifying the theorem– over the corresponding parameter values.

For completeness we give the different bases associated, in the different seg-
ments, to the above ideal of thesis plus hypotheses

B1 = [1]
B2 = [u2

2 + x2
4 − 2u2x4, −u1x4 + u2x3, u

3
2 − 2u2u1 + x2u

2
2 + (−2u2

2 + 2u1)x4,
u2u1 + x1u2 − 2u1x4]

B3 = [−2u2x4 + x2
4, x3, (u2

2 + 1)x2 − x4, (u2
2 + 1)x1 − u2x4]

B4 = [x4, x3, x2, x1]
B5 = [x4, −4 + 2x3, x

2
2, −2 + x1]

B6 = [x2
4, x

2
3, −x3x4 + 2x2 − 2x4, 2x1]

Example 3. Next we consider the problem7 described in Figure 4. Take a circle
C with center at O(0, 0) and radius 1 and let us denote points A = (−1, 0) and
7 We thankfully acknowledge here that this problem was suggested by a colleague,

Manel Udina.
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B = (0, 1). Let D be an arbitrary point with coordinates D = (1 + a, b) and let
C = (1 + a, 0) be another point in the X-axis, lying under point D. Then trace
the line BC. Assume this line intersects the circle C at point P (x, y).

A(−1, 0)

B(0, 1)

C(1 + a, 0)

D(1 + a, b)

D′(1 + a, b′)

E(1, 0)

P (x, y)

Fig. 4. Example 3

Consider now the, in general false, statement “the points A, P, D are aligned”.
We want to discover the conditions on the parameters a, b for the statement to
be true. The set of hypotheses plus thesis equations are very simple:

HT = [x2 + y2 − 1, −x + 1 − y + a − ay, −2y + b + xb − ay]

Take x, y as variables and a, b as parameters and call mccgs(HT, lex(x, y),
lex(a, b)). The graphical output of the algorithm can be seen in Figure 5, and
the algebraic description appears in the following table.

lpp Basis Bi Description of Si

[1] [1] (K2 \ (V(a − b) \ V(a − b, (b + 1)2 + 1)))
∪ (K2 \ V(2 + a))
∪ (K2 \ V(a − b + 2))

[y, x] [(ab + a + b + 2)y − 2b − ab, (V(a − b) \ V(a − b, (b + 1)2 + 1))
(ab + a + b + 2)x + b + ab − 2 − 3a − a2] ∪ (V(2 + a) \ V(b, 2 + a))

∪ (V(a − b + 2) \ V(b, 2 + a))
[y2, x] [y(y − 1), 1 + x − y] V(b, 2 + a)
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[1]

[b^2+2+2*b, a-b]

[1][b, 2+a][b, 2+a][b^2+2+2*b, a-b][-b+2+a][2+a][a-b]

[b, 2+a][-b+2+a][2+a][a-b][]

[y^2, x][y, x][1]

[x^2+y^2–1, -x+1-y+a-a*y, –2*y+b+x*b-a*y]

Fig. 5. Canonical tree for Example 3

As we see, the generic case has basis [1] showing that the statement is false
in general. The interesting case corresponds, as it is usually expected, to the
case with lpp = [x, y], providing a unique solution for P . The description of the
parameter set associated to this basis gives the union of three different locally
closed sets, namely V(a − b) \ V(a − b, (b + 1)2 + 1), V(2 + a) \ V(b, 2 + a) and
V(a−b+2)\V(b, 2+a), expressing complementary hypotheses for the statement
to hold.

The first set is (perhaps) the expected one, corresponding to the case a = b
(except for the degenerate complex point (b, b) with (b + 1)2 + 1 = 0, without
interest from the real point of view). Thus we can say that the statement holds
if point C is equidistant from point D and point E.

The second set yields a = −2 and corresponds to the situation where point D
is on the tangent to the circle trough the point (−1, 0) (except for the degenerate
case b = 0). In this case P = A and, obviously, A, P, D are aligned (even in the
degenerate case, as stated in the third segment, corresponding to the lpp =
[y2, x]).

Finally, the third set gives the condition b = a + 2 and it is also interesting,
since it corresponds to the case where the intersecting point of the line BC with
the circle is taken to be B instead of P , and then point D′ should be in the
vertical of C and at distance D′C equal to distance EC plus two.

Example 4. [Isosceles orthic triangle]
In [DR] the conditions for the orthic triangle of a given triangle (that is, the

triangle built up by the feet of the altitudes of the given triangle over each side)
to the equilateral have been discovered. Next example aims to discover conditions
for a given triangle in order to have an isosceles orthic triangle.

Consider the triangle of Figure 1 with vertices A(−1, 0), B(1, 0) and C(a, b),
corresponding to a generic triangle having one side of length 2. Denote by
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P1(a, 0), P2(x2, y2), P3(x3, y3) the feet of the altitudes of the given triangle, ie.
the vertices of the orthic triangle. The equations defining these vertices are:

H = (a − 1) y2 − b (x2 − 1) = 0,
(a − 1) (x2 + 1) + b y2 = 0,
(a + 1) y3 − b (x3 + 1) = 0,
(a + 1) (x3 − 1) + b y3 = 0,

⎫
⎪⎪⎬

⎪⎪⎭

Now let us add the condition P1P3 = P1P2.

T = (x3 − a)2 + y2
3 − (x2 − a)2 − y2

2 = 0.

Take x2, x3, y2, y3 as variables and a, b as free parameters and call

mccgs(H ∪ T, lex(x2, x3, y2, y3), lex(a, b)).

The output has now four segments. The generic case, with lpp = [1], meaning
that the orthic triangle is, in general, not isosceles; one interesting case with
lpp = [y3, y2, x3, x2]; and two more cases we can call degenerate, with lpp’s
[y2, x

2
3, x2] and [y2, x3, x

2
2], respectively. For the interesting case we show the

graphic output in Figure 6. Its basis is

B2 = [(a2 + b2 + 2a + 1)y3 − 2ab − 2b, (a2 + b2 − 2a + 1)y2 + 2ab − 2b,
(a2 + b2 + 2a + 1)x3 − a2 + b2 − 2a − 1, (a2 + b2 − 2a + 1)x2 + a2 − b2 − 2a + 1].

Next table shows the description of the lpp and the Si’s for the the four cases:

lpp Description of Si

[1] K2 \ ((V(a) \ V(b2 + 1, a))
∪ (V(a2 − b2 − 1) \ V(b2 + 1, a))
∪ V(a2 + b2 − 1))

[y3, y2, x3, x2] V(a) \ V(b2 + 1, a)
∪ V(a2 + b2 − 1) \ (V(b, a − 1) ∪ V(b, a + 1))
∪ (V(a2 − b2 − 1) \ (V(b2 + 1, a) ∪ V(b, a − 1) ∪ V(b, a + 1))

[y2, x
2
3, x2] V(b, a + 1)

[y2, x3, x
2
2] V(b, a − 1)

The description of the parameter set (over the reals) for which the theorem is
potentially true and no degenerate can be phrased as follows:

1) a = 0
2) a2 + b2 = 1 except the points (1, 0) and (−1, 0)
3) a2 − b2 = 1 except the points (1, 0) and (−1, 0)

This set is represented in Figure 7. and corresponds to

1) The given triangle is itself isosceles (a = 0);
2) The given triangle is rectangular at vertex C (with vertices A(−1, 0), B(1, 0)

and the vertex C(a, b) inscribed in the circle a2 + b2 = 1,
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[b, a+1][b, a–1][b, a+1][b, a–1][b^2+1, a][b^2+1, a]

[a^2–1+b^2][a^2–1-b^2][a]

[y3, y2, x3, x2]

Fig. 6. Canonical tree branch for lpp = [y3, y2, x3, x2] in Example 4

BA

C

P1

P3

P2

Fig. 7. Solutions of Example 4

3) The given triangle has vertices A(−1, 0), B(1, 0) and vertex C(a, b) lies on
the hyperbola a2 − b2 = 1.

Solution 1) is, perhaps, not surprising. Solution 2) corresponds to rectangular
triangles for which the orthic triangle reduces to a line, that can be considered
a degenerate isosceles triangle. But solution 3) is a nice novelty: it exists a one
parameter family of non-isosceles triangles having isosceles orthic triangles.

The remaining two cases in the MCCGS output with lpp = [y2, x
2
3, x2] and lpp=

[y2, x3, x
2
2] represent degenerate triangles without geometric interest (namely C =

A and C = B).
Thus, after performing an automatic proving procedure for the new hypothe-

ses, we can formulate the following theorem:

Theorem 1. Given a triangle with vertices A(−1, 0), B(1, 0) and C(a, b), its
orthic triangle will be isosceles if and only if vertex C lies either on the line
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a = 0 (and then the given triangle is itself isosceles) or in the circle a2 + b2 = 1
(and then it is rectangular) or in the hyperbola a2 − b2 = 1.

Example 5. [Skaters]
Our final example is taken from the pastimes section of the French journal Le
Monde, published on the printed edition of Jan. 8, 2007. This example is there
attributed to E. Busser and G. Cohen. We think it is nice from Le Monde to
include the proof of a theorem as a pastime. Actually, the statement to be proved
was presented as arising from a more down-to-earth situation: two ice-skaters are
moving forming two intersecting circles, at same speed and with the same sense
of rotation. They both depart from one of the points of intersection of the two
circles. Then the journal asked to show that the two skaters were always aligned
with the other point of intersection (where some young lady, both skaters were
interested at, was placed...).

Let us translate this problem into a theorem discovering question, as follows.
We will consider two circles with centers at P (a, 1) and Q(−b, 1) and radius

r2
1 = a2 + 1 and r2

2 = b2 + 1, as shown in Figure 8, intersecting at points O(0, 0)
and M(0, 2). Consider generic points –the skaters– A(x1, y1) and B(x2, y2) on
the respective circles. Point A will be parametrized by the oriented angle v =
ÔPA and, correspondingly, point B will describe the oriented angle w = ÔQB.
Therefore we can say that angle zero corresponds to the departing location of
both skaters, namely, point O.

We claim that, for whatever position of points A, B, the points A, M, B are
aligned, which is obviously false in general. But we want to determine if there is
a relation between the two oriented angles making this statement to hold true.
Denote cv, sv, cw, sw the cosine and sine of the angles v and w. It is easy to
establish the basic hypotheses, using scalar products:

H1 = [(x1 − a)2 + (y1 − 1)2 − a2 − 1, (x2 + b)2 + (y2 − 1)2 − b2 − 1,
a(x1 − a) + (y1 − 1) + (a2 + 1)cv, −b(x2 + b) + (y2 − 1) + (1 + b2)cw

Now, as the angles are to be taken oriented (because we assume the skaters
tare moving on the corresponding circle in the same sense), we need to add the
vectorial products involving also the sine to determine exactly the angles and
not only their cosines. So we add the hypotheses:

H2 = [a(y1 − 1) − (x1 − a) + (a2 + 1)sv, −b(y2 − 1) − (x2 + b) + (b2 + 1)sw]

The thesis is, clearly:

T = x1y2 − 2x1 − x2y1 + 2x2.

The radii of the circles are

r2
1 = a2 + 1 and r2

2 = b2 + 1

and for r1 �= 0 and r2 �= 0 we have

cv0 = cos v0 = cos ÔPM =
a2 − 1
a2 + 1

, sv0 = sin v0 = sin ÔPM =
−2a

a2 + 1
,

cw0 = cosw0 = cos ÔQM =
b2 − 1
b2 + 1

, sw0 = sin w0 = sin ÔQM =
2b

b2 + 1
.
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P (a, 1)Q(−b, 1)

M(0, 2)

O(0, 0)

B(x2, y2)

A(x1, y1)

Fig. 8. Skaters problem

We want to take a, b and the angles v and w –in terms of the sines and cosines–
as parameters. So we must introduce the constraints on the sine and cosine pa-
rameters. Moreover, we notice there are also some obvious degenerate situations,
namely r1 = 0, r2 = 0 and a + b = 0, corresponding to null radii or coincident
circles, and we want to avoid them.

Currently, MCCGS allows us to introduce all these constraints in order to
discuss the parametric system. The call is now

mccgs(H1 ∪ H2 ∪ T, lex(x1, y1, x2, y2), lex(a, b, sv, cv, sw, cw),
null = [c2

v + s2
v − 1, c2

w + s2
w − 1], notnull = {a2 + 1, b2 + 1, a + b}).

including the constraints on the parameters and eluding degenerate situations
as options for MCCGS.

The result is that MCCGS outputs only 2 cases. The first one has basis [1],
showing that, in general, there is no solution to our query. The second one has
lpp = [y2, x2, y1, x1] determining in a unique form the points A and B for the
given values of the parameters. The associated basis is

[y2 + cw − bsw − 1, x2 − bcw − sw + b, y1 + cv + asv − 1, x1 + acv − sv − a]

with parameter conditions that can be expressed as the union of three irreducible
varieties:

V1 = V(c2
w + s2

w − 1, cv − cw, sv − sw)
V2 = V(c2

w + s2
w − 1, c2

v + s2
v − 1, sw + bcw − b, bsw − cw − 1)

V3 = V(c2
w + s2

w − 1, c2
v + s2

v − 1, −sv + acv − a, asv + cv + 1)

The interpretation is easy: V1 corresponds to arbitrary a, b, w, plus the essen-
tial condition v = w, which is the interesting case, stating that our conjecture
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requires (and it is easy to show that this condition is sufficient) that both skaters
keep moving with the same angular speed.

V2 corresponds to sw = sw0 , cw = cw0 and a, b, v free, thus B = M and A
can take any position.

V3 is analogous to V2, and corresponds to placing A = M and B anywhere.
So we can summarize the above discussion in the following

Theorem 2. Given two non coincident circles of non-null radii and centers P
and Q, intersecting at two points O and M , let us consider points A, B on
each of the circles. Then the three points A, M, B are aligned if and only if the
oriented angles ÔPA and ÔQB are equal or A or B or both coincide with M .

6 Performances

Although the principal advantage of MCCGS in relation to other CGS algorithms
is the simplicity and properties of the output: the minimal number of segments
and the characterization of the type of the solution depending on the values of the
parameters, the computer implementation8 of the corresponding package, named
dpgb release 7.0, in Maple 8 is relatively short time consuming. Moreover,we think
that no other actual PCAD software will be able to obtain the accurate result
obtained, for example, in example 13. We give here a table with the CPU time
and number of segments for the examples of the paper.

Example CPU time (sec.) Number of segments
1 1.9 3
2 12.8 6
3 0.98 3
4 4.4 4
5 129.4 2

The computations were done with a Pentium(R) 4 CPU at 3.40 Ghz and 1.00
GB RAM.

7 Conclusion

We have briefly introduced the principles of automatic discovery and also the
ideas –in the context of comprehensive Gröbner basis– for discussing polynomial
systems with parameters, via the new MCCGS algorithm. Then we have shown
how natural is to merge both concepts, since the parameter discussion can be
interpreted as yielding, in particular, the projection of the system solution set
over the parameter space; and since the conditions for discovery can be obtained
by the elimination of the dependent variables over the ideal of hypotheses and
8 That can be freely obtained at http://www-ma2.upc.edu/∼montes
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thesis. Moreover, we have also remarked how the approach through MCCGS
provides new candidate complementary conditions of more general type and, in
some particular instances (segments of the parameter space yielding to unique
solution), quite common in our examples, an easy test for the sufficiency of these
conditions. Finally, the use of MCCGS for automatic proving has been presented,
as part of a formal discussion on the limitations of the discovery method.

We have exemplified this approach through a collection of non-trivial exam-
ples (performed by running the current Maple implementation of MCCGS, see
[MaMo06], over a laptop, without special time – a few seconds– or memory
requirements), showing that in all cases, the MCCGS output is very suitable
to providing geometric insight, allowing the actual discovery of interesting and
new? theorems (and pastimes!).
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Abstract. This paper describes the mechanization of the proofs of the
first height chapters of Schwabäuser, Szmielew and Tarski’s book: Meta-
mathematische Methoden in der Geometrie. The proofs are checked for-
mally using the Coq proof assistant. The goal of this development is to
provide foundations for other formalizations of geometry and implemen-
tations of decision procedures. We compare the mechanized proofs with
the informal proofs. We also compare this piece of formalization with
the previous work done about Hilbert’s Grundlagen der Geometrie. We
analyze the differences between the two axiom systems from the formal-
ization point of view.

1 Introduction

Euclid is considered as the pioneer of the axiomatic method, in the Elements,
starting from a small number of self-evident truths, called postulates or common
notions, he derives by purely logical rules most of the geometrical facts that were
discovered in the two or three centuries before him. But upon a closer reading of
Euclid’s Elements, we find that he does not adhere as strictly as he should to the
axiomatic method. Indeed, at some steps in certain proofs he uses a method of
“superposition of triangles”. This kind of justifications can not be derived from
his set of postulates.

In 1899, in der Grundlagen der Geometrie, Hilbert described a more formal
approach and proposed a new axiom system to fill the gaps in Euclid’s system.

Recently, the task consisting in mechanizing Hilbert’s Grundlagen der Ge-
ometrie has been partially achieved. A first formalization using the Coq proof
assistant [1] was proposed by Christophe Dehlinger, Jean-François Dufourd and
Pascal Schreck [2]. This first approach was realized in an intuitionist setting, and
concluded that the decidability of point equality and collinearity is necessary
to check Hilbert’s proofs. Another formalization using the Isabelle/Isar proof
assistant [3] was performed by Jacques Fleuriot and Laura Meikle [4]. Both for-
malizations have concluded that, even if Hilbert has done some pioneering work
about formal systems, his proofs are in fact not fully formal, in particular de-
generated cases are often implicit in the presentation of Hilbert. The proofs can
be made more rigorous by machine assistance. Indeed, in the different editions
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of die Grundlagen der Geometrie the axioms were changed, but the proofs were
note always changed accordingly, this obviously resulted in some inconsistencies.
The use of a proof assistant solves this problem: when an axiom is changed it is
easy to check if the proofs are still valid.

In the early 60s, Wanda Szmielew and Alfred Tarski started the project of
a treaty about the foundations of geometry based on another axiom system for
geometry designed by Tarski in the 20s1. A systematic development of euclidean
geometry was supposed to constitute the first part but the early death of Wanda
Szmielew put an end to this project. Finally, Wolfram Schwabhäuser continued
the project of Wanda Szmielew and Alfred Tarski. He published the treaty in
1983 in German: Metamathematische Methoden in der Geometrie [6]. In [7], Art
Quaife used a general purpose theorem prover to automate the proof of some
lemmas in Tarski’s geometry.

In this paper we describe our formalization of the first eight chapters of the
book of Wolfram Schwabhäuser, Wanda Szmielew and Alfred Tarski in the Coq
proof assistant.

We will first describe the different axioms of Tarski’s geometry and give an
history of the different versions of this axiom system. Then after a shot intro-
duction to the system Coq, we present our formalization of the axiom system
and the mechanization of one example theorem. Finally, we compare our formal-
ization with existing ones and compare Tarski’s axiomatic system with Hilbert’s
system from the mechanization point of view.

2 Motivations

We aim at two applications: the first one is the use of a proof assistant in the
education to teach geometry [8,9], the second one is the proof of programs in the
field computational geometry.

These two themes have already been partially addressed by the community.
Frédérique Guilhot has realized a large Coq development about euclidean ge-
ometry following a presentation suitable for use in french high-school [10]. Con-
cerning the proof of programs in the field of computational geometry we can
cite the formalization of convex hulls algorithms by David Pichardie and Yves
Bertot in Coq [11] and by Laura Meikle and Jacques Fleuriot in Isabelle [12] and
the formalization of an image segmentation algorithm by Jean-François Dufourd
[13]. In [14,15], we have presented the formalization and implementation in the
Coq proof assistant of the area decision procedure of Chou, Gao and Zhang [16].

Formalizing geometry in a proof assistant has not only the advantage of pro-
viding a very high level of confidence in the proof generated, it also permits
to insert purely geometric arguments within other kind of proofs such as for
instance proof of correctness of programs or proofs by induction. For the time
being all the formal developments we have cited are distinct and as they do not
use the same axiomatic system, they can not be combined.
1 These historical pieces of information are taken from the introduction of the publi-

cation by Givant in 1999 [5] of a letter from Tarski to Schwabhäuser (1978).
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The goal of our mechanization is to do a first step in the direction of the
merging of these developments. We aim at providing very clear foundations for
other formalizations of geometry and implementations of decision procedures.

3 Tarski’s Axiom System

Alfred Tarski worked on the axiomatization and meta-mathematics of euclidean
geometry from 1926 until his death in 1983. Several axiom systems were produced
by Tarski and his students. In this section, we first give an informal description
of the propositions which appeared in the different versions of Tarski’s axiom
system, then we provide an history of these versions and finally we present the
version we have formalized.

The axioms are based on first order logic and two predicates:

betweenness. The ternary betweenness predicate β AB C informally states
that B lies on the line AC between A and C.

equidistance. The quaternary equidistance predicate AB ≡ CD informally
means that the distance from A to B is equal to the distance from C to D.

Note that in Tarski’s geometry, only a set of points is assumed, in particular,
lines are defined by two distinct points whereas in Hilbert’s axiom system lines
and planes are assumed.

3.1 Axioms

We reproduce here the list of propositions which appear in the different versions
of Tarski’s axiom system. We adopt the same numbering as in [5]. Free variables
are considered to be implicitly quantified universally.

1 Symmetry for equidistance

AB ≡ BA

2 Pseudo-transitivity for equidistance2

AB ≡ PQ ∧ AB ≡ RS ⇒ PQ ≡ RS

3 Identity for equidistance

AB ≡ CC ⇒ A = B

4 Segment construction

∃X, β Q AX ∧ AX ≡ BC

2 Note that we call this property pseudo-transitivity because the transitivity property
for equidistance should be:

AB ≡ PQ ∧ PQ ≡ RS ⇒ AB ≡ RS.
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The segment construction axiom states that one can build a point on a ray
at a given distance.
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5 Five segments

A �= B ∧ β AB C ∧ β A′ B′ C′∧
⇒ CD ≡ C′D′

AB ≡ A′B′ ∧ BC ≡ B′C′ ∧ AD ≡ A′D′ ∧ BD ≡ B′D′

51 Five segments (variant)

A �= B ∧ B �= C ∧ β AB C ∧ β A′ B′ C′∧
⇒ CD ≡ C′D′

AB ≡ A′B′ ∧ BC ≡ B′C′ ∧ AD ≡ A′D′ ∧ BD ≡ B′D′

This second version differs from the first one only by the condition B �= C.

6 Identity for betweenness

β AB A ⇒ A = B

The original Pasch axiom states that if a line intersects one side of a triangle
and misses the three vertexes, then it must intersect one of the other two sides.
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Fig. 1. Axioms of Pasch

7 Pasch (inner form)

β AP C ∧ β B Q C ⇒ ∃X, β P X B ∧ β Q X A

71 Pasch (outer form)

β AP C ∧ β Q C B ⇒ ∃X, β AX Q ∧ β B P X

72 Pasch (outer form) (variant)

β AP C ∧ β Q C B ⇒ ∃X, β AX Q ∧ β X P B



Mechanical Theorem Proving in Tarski’s Geometry 143

73 weak Pasch

β AT D ∧ β B D C ⇒ ∃X, Y, β AX B ∧ β AY C ∧ β Y T X

Dimension axioms provide upper and lower bound for the dimension of the
space. Note that lower bound axioms for dimension n are the negation of upper
bound axioms for the dimension n − 1.

8(2) Dimension, lower bound 2

∃ABC, ¬β AB C ∧ ¬β B C A ∧ ¬β C AB

There are three non collinear points.

8(n) Dimension, upper bound n

∃ABCP1P2 . . . Pn−1,

∧
1≤i<j<n Pi �= Pj∧

∧n−1
i=2 AP1 ≡ APi ∧ BP1 ≡ BPi ∧ CP1 ≡ CPi∧

¬β AB C ∧ ¬β B C A ∧ ¬β C AB

9(1) Dimension, upper bound 1

β AB C ∨ β B C A ∨ β C AB

Three points are always on the same line.

9(n) Dimension, upper bound n
∧

1≤i<j≤n Pi �= Pj∧∧n
i=2 AP1 ≡ APi ∧ BP1 ≡ BPi ∧ CP1 ≡ CPi

⇒ β AB C ∨ β B C A ∨ β C AB

91(2) Dimension, upper bound 2 (variant)3

∃Y, (ColXY A ∧ β B Y C) ∨ (ColXY B ∧ β C Y A) ∨ (ColXY C ∧ β AY B)

10 Euclid’s axiom

β AD T ∧ β B D C ∧ A �= D ⇒ ∃X, Y β AB X ∧ β AC Y ∧ β X T Y

101 Euclid’s axiom (variant)

β AD T ∧ β B D C ∧ A �= D ⇒ ∃X, Y β AB X ∧ β AC Y ∧ β Y T X

11 Continuity

∃a, ∀xy, (x ∈ X ∧ y ∈ Y ⇒ β a x y) ⇒ ∃b, ∀xy, x ∈ X ∧ y ∈ Y ⇒ β x b y

Schema 11 Elementary Continuity (schema)

∃a, ∀xy, (α ∧ β ⇒ β a x y) ⇒ ∃b, ∀xy, α ∧ β ⇒ β x b y

where α and β are first order formulas, such that a, b and y do not appear free
in α; a, b and x do not appear free in β.
3 ColABC is a shorthand for β A B C∨β B C A∨β C A B to simplify the presentation.

The Col predicate does not belong to the language of the theory of Tarski.
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A geometry defined by the elementary continuity axiom schema instead of the
higher order continuity axiom is called elementary.

12 Reflexivity of β

β AB B

B is always between A and B.

14 Symmetry of β

β AB C ⇒ β C B A

If B is between A and C then B is between C and A.

13 Compatibility of equality with β

A = B ⇒ β AB A

19 Compatibility of equality with ≡

A = B ⇒ AC ≡ BC

15 Transitivity (inner) of β

β AB D ∧ β B C D ⇒ β AB C

16 Transitivity (outer) of β

β AB C ∧ β B C D ∧ B �= C ⇒ β AB D

17 Connectivity (inner) of β

β AB D ∧ β AC D ⇒ β AB C ∨ β AC B

18 Connectivity (outer) of β

β AB C ∧ β AB D ∧ A �= B ⇒ β AC D ∨ β AD C

20 Triangle construction unicity

AC ≡ AC′ ∧ BC ≡ BC′∧
β AD B ∧ β AD′ B ∧ β C D X∧
β C′ D′ X ∧ D �= X ∧ D′ �= X

⇒ C = C′

201 Triangle construction unicity (variant)

A �= B∧
AC ≡ AC′ ∧ BC ≡ BC′∧
β B D C′ ∧ (β AD C ∨ β AC D)

⇒ C = C′

21 Triangle construction existence

AB ≡ A′B′ ⇒ ∃CX,
AC ≡ A′C′ ∧ BC ≡ B′C′∧
β C X P ∧ (β AB X ∨ β B X A ∨ β X AB)
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Year : 1940 1951 1959 1965 1983
Reference : [18] [17] [19] [20] [6]
Axioms : 1 1 1 1 1

2 2 2 2 2
3 3 3 3 3
4 4 4 4 4
51 51 5 5 5
6 6 6 6
72 72 71 71 7

8(2) 8(2) 8(2) 8(2) 8(2)
91(2) 91(2) 9(2) 9(2) 9(2)
10 10 101 101 10
11 11 11 11 11
12 12
13
14 14
15 15 15 15
16 16
17 17
18 18 18
19
20 → 201

21 21

Nb of axioms : 20 18 12 10 10
+ + + + +

1 schema 1 schema 1 schema 1 schema 1 schema

Fig. 2. History of Tarski’s axiom systems

Identity β A B A ⇒ (A = B)
Pseudo-Transitivity AB ≡ CD ∧ AB ≡ EF ⇒ CD ≡ EF

Symmetry AB ≡ BA
Identity AB ≡ CC ⇒ A = B

Pasch ∃X, β A P C ∧ β B Q C ⇒ β P x B ∧ β Q x A
Euclid ∃XY, β A D T ∧ β B D C ∧ A �= D ⇒

β P x B ∧ β Q x A

5 segments
AB ≡ A′B′ ∧ BC ≡ B′C′∧
AD ≡ A′D′ ∧ BD ≡ B′D′∧
β A B C ∧ β A′ B′ C′ ∧ A �= B ⇒ CD ≡ C′D′

Construction ∃E,β A B E ∧ BE ≡ CD
Lower Dimension ∃ABC,¬β A B C ∧ ¬β B C A ∧ ¬β C A B
Upper Dimension AP ≡ AQ ∧ BP ≡ BQ ∧ CP ≡ CQ ∧ P �= Q

⇒ β A B C ∨ β B C A ∨ β C A B
Continuity ∀XY, (∃A, (∀xy, x ∈ X ∧ y ∈ Y ⇒ β A x y)) ⇒

∃B, (∀xy, x ∈ X ⇒ y ∈ Y ⇒ β x B y).

Fig. 3. Tarski’s axiom system (Formalized version - 11 axioms)
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3.2 History

Tarski began to work on his axiom system in 1926 and presented it during his
lectures at Warsaw university4. He submitted it for publication in 1940 and was
published in his first form in 1967 [18]. This version contains 20 axioms and
one schema. A second version, slightly simpler was published in [17]. This first
simplification consists only in considering a logic with built-in equality, axioms
13 and 19 are then useless. This second version was further simplified by Eva
Kallin, Scott Taylor and Tarski into a system of twelve axioms [19]. The last
simplification was obtained by Gupta in its PhD thesis [20], where he gives the
proof that two more axioms can be derived from the remaining ones.

Figure 2 gives the list of axioms contained in each of these axiom systems.
Figure 3 provides the final list of axioms that we used in our formalization.

4 A Short Introduction to the Coq Proof Assistant

The Coq system [1,21,22] is a proving tool based on a logical formalism called
the calculus of inductive constructions [23]. Even if the Coq system has some
automatic theorem proving features, it is not an automatic theorem prover. The
proofs are mainly built by the user interactively. The system checks whether
the proof is correct. In [14], we have described the formalization of decision
procedure for geometry. This formalization, allows to use the area method to
generate automatically proofs which are double checked by the Coq system. In
this development, we do not want to make use of this procedure. Otherwise we
would have a circularity problem because our goal is to provide solid foundations
for different formal developments about geometry including this one.

The underlying logic of the Coq system is an intuitionist logic. This means
that the proposition A ∨ ¬A is not taken for granted and, if it is needed, the
user has to assume it explicitly. This allows to clarify the distinction between
classical and constructive proofs.

The user interacts with the system using commands which modify the current
state of the proof. The language used to interact with the system is called a tactic
language5.

5 Formalization in Coq

The mechanization of the proof we have realized prove formally that the simplifi-
cations of the first version of Tarski’s axiom system are correct. The unnecessary
axioms are derived from the remaining ones.

Now, we provide a quick overview of the content of each chapter. We will only
detail an example proof in the next section.
4 We use [5] and the footnotes in [17] to give a quick history of the different versions

of Tarski’s axiom system.
5 Note that in the latest version of Coq (8.1) another proof language is available, this

new language allows to write proofs which are more readable, unfortunately it was
not available when have started this work.



Mechanical Theorem Proving in Tarski’s Geometry 147

The first chapter contains the declaration of all the axioms and the definition
of the collinearity predicate (noted Col).

The second chapter contains some basic properties of the equidistance pred-
icate (noted Cong). It contains also the proof of the unicity of the point
constructed thanks to the segment construction axiom.

The third chapter contains some properties of the betweenness predicate (no-
ted Bet). It contains in particular the proof of the axioms 12, 14 and 16.

The fourth chapter contains the proof of several properties of Cong, Col and
Bet.

The fifth chapter contains some pseudo-transitivity properties of betweenness
and the definition of the length comparison predicate (noted le) with some
associated properties. It includes in particular the proofs of the axioms 17
and 18.

The sixth chapter defines the out predicate which means that a point lies on
a line out of a segment. This predicate is used to prove some other properties
of Cong, Col and Bet such as transitivity properties for Col.

The seventh chapter defines the midpoint of a segment and the symmetric
points. It has to be noted that at this step the existence of the midpoint is
not derived yet.

The eighth chapter contains the definition of the predicate ’perpendicular’
(Perp), and the proof of some related properties such as the existence of the
foot of the perpendicular. Finally, the existence of the midpoint of a segment
is derived.

5.1 Two Crucial Lemmas

Our formalization follows strictly the lines of the book by Schwabhäuser, Szmie-
lew and Tarski except in the fifth chapter where we introduce two crucial lemmas
which do not appear in the original text, and which are necessary to fill some
gaps in the informal proofs. These two lemmas allows to deduce the equality of
two points which lie on a segment under an hypotheses involving distances.

∀ABC, β AB C ∧ AC ≡ AB ⇒ C = B

� � �

A B C

Proof. We use the lemma 4.6 of [6]:

∀ABCA′B′C′, β AB C ∧ Cong3ABCA′B′C′ ⇒ β A′ B′ C′.

As we know by assumption that β AB C, we apply the lemma with A := A,
B := B, C := C, A′ := A ,B′ := C and C′ := B, to obtain that:

Cong3ABCACB ⇒ β AC B

The predicate Cong3A1A2A3B1B2B3 expresses that:

A1A2 ≡ B1B2 ∧ A1A3 ≡ B1B3 ∧ A2A3 ≡ B2B3
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So here, we need to show that:

AB ≡ AC ∧ AC ≡ AB ∧ BC ≡ CB.

The first conjunct is shown by commutativity of ≡ , the second one by hypoth-
esis and the third one using the pseudo-commutativity property of the oriented
distance.
As β AB C and β AC B, we can conclude that C = B using the lemma
between_equality:

∀ABC : Point, β AB C ∧ β B AC ⇒ A = B

and the symmetry property of β .

The second lemma is the following, we omit the proof.

∀ABDE, β AD B ∧ β AE B ∧ AD ≡ AE ⇒ D = E.

� �� �

A BD E

5.2 A Comparison Between the Formal and Informal Proofs

We first describe in detail the formal proof of a simple example: the first crucial
lemma. Then, we reproduce here one of the non trivial proofs: the proof due to
Gupta [20] that axiom 18 can be derived from the remaining ones. We translate
the proof from [6] and provide in parallel the mechanized proof as a Coq script.
For the conciseness of the presentation we provide only the beginning of the
formal proof6. For the reader not familiar with the Coq proof assistant, we
provide a quick informal explanation of the role of the main tactics we use in
these proofs.

intro is used to introduced hypothesis in the context. It is the equivalent of the
informal sentence: “Suppose that we have A”

assert is used to state what we want to prove. When it is followed by “. . . ” this
means that this assertion can be proved automatically.

DecompExAnd given an existential hypotheses, introduces the witness of the ex-
istential and decompose the knowledge about it.

split splits a conjunction into its components. This used the fact fact that to
show A ∧ B, one can show first A then B.

apply is used to apply an assumption, a lemma or theorem.
Tarski,sTarski,Between,. . . are automatic tactics which try to prove the cur-

rent goal. Informally this can be read as “by simple properties of betweenness”
or “by direct application of one of the axioms”.

unfold replaces something by its definition.
cases_equality perform a reasoning by cases on the equality of two points.

6 The full proofs are available at the address given at the end of this paper.
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A First Example. First we input the statement of the lemma in Coq’s syntax.
β AB C is noted Bet A B C and AC ≡ AB is noted Conq A C A B. The text
displayed after Coq < represents the input, the other pieces of text represent the
output by the system.

Coq < Lemma between_cong : forall A B C,
Coq < Bet A C B -> Cong A C A B -> C=B.
Coq < 1 subgoal

============================
thesis := forall A B C : Point, Bet A C B -> Cong A C A B -> C = B

The Coq system confirms that we have one statement to prove. The statements
appearing above the horizontal line are the hypotheses and the one appearing
under the horizontal line are the fact to be proved. Here we do not have any
hypothesis yet. We can now start the proof.

Coq < Proof.

The first tactic we apply is the intro tactic. This introduces in the context
the left hand side of the implications.

Coq < intros.
1 subgoal

A : Point
B : Point
C : Point
H : Bet A C B
H0 : Cong A C A B
============================
thesis := C = B

Now, we have five hypotheses. We know that A, B and C are points, that
β AC B and that AC ≡ AB. We need to show that C = B.

Let’s first prove that β AB C.

Coq < assert (Bet A B C).
2 subgoals

A : Point
B : Point
C : Point
H : Bet A C B
H0 : Cong A C A B
============================
thesis := Bet A B C
subgoal 2 is: C = B
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We have two statements two prove. The first one is β AB C and the second
one is C = B. Now, we apply the lemma 4.6. This changes our first subgoal into
two subgoals which are the assumptions of the lemma 4.6.

Coq < eapply l4_6.
3 subgoals

A : Point
B : Point
C : Point
H : Bet A C B
H0 : Cong A C A B
============================
thesis := Bet ?X ?Y ?Z
subgoal 2 is: Cong_3 ?X ?Y ?Z A B C
subgoal 3 is: C = B

The first subgoal means that we have to prove β ?X ?Y ?Z for some ?X , ?Y
and ?Z. We choose to apply our assumption H . This instantiate ?X , ?Y and ?Z
with A, C and B respectively.

Coq < apply H.
2 subgoals

A : Point
B : Point
C : Point
H : Bet A C B
H0 : Cong A C A B
============================
thesis := Cong_3 A C B A B C
subgoal 2 is: C = B

Now, we need to show that Cong_3 A C B A B C. This can be done by un-
folding the definition of Conq_3, spliting the conjunction we get and solving the
resulting subgoals using an automatic tactic.

Coq < unfold Cong_3;repeat split;sTarski.
1 subgoal

A : Point
B : Point
C : Point
H : Bet A C B
H0 : Cong A C A B
H1 : Bet A B C
============================
thesis := C = B
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Again, we need to show C = B, but this time we have the hypothesis H1.

Coq < esTarski.
Proof completed.

From H and H1 it is possible to conclude using an automatic tactic. Finally,
Coq checks again the proof and add it to its database.

Coq < Qed.
between_cong is defined

Note that during the proof the system checks that the commands we give are
correct but in this last step the proof is checked again by a small part of the Coq
system called the kernel. Only the kernel of the system needs to be bug free to
ensure the correctness of the proof. Bugs which are outside the kernel can not
lead to a proof of a false statement.

Axiom 18

Theorem 1 (Gupta). A �= B ∧ β AB C ∧ β AB D ⇒ β AC D ∨ β AD C

� �

�

�

�

�

�

�

A B

D C’

B’

B”

C D’

E

Proof: Let C′ and D′ be points such that :

β AD C′ ∧ DC′ ≡ CD and β AC D′ ∧ CD′ ≡ CD

assert (exists C’, Bet A D C’ /\ Cong D C’ C D)...
DecompExAnd H2 C’.
assert (exists D’, Bet A C D’ /\ Cong C D’ C D)...
DecompExAnd H2 D’.

We have to show that C = C′ or D = D′.
Let B and B′′ points such that :

β AC′ B′ ∧ C′B′ ≡ CB and β AD′ B′′ ∧ D′B′′ ≡ DB

assert (exists B’, Bet A C’ B’ /\ Cong C’ B’ C B)...
DecompExAnd H2 B’.
assert (exists B’’, Bet A D’ B’’ /\ Cong D’ B’’ D B)...
DecompExAnd H2 B’’.
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Using the lemma 2.117 we can deduce that BC′ ≡ B′′C and that BB′ ≡ B′′B.

assert (Cong B C’ B’’ C).
eapply l2_11.
3:apply cong_commutativity.
3:apply cong_symmetry.
3:apply H11.
Between.
Between.
esTarski.
assert (Cong B B’ B’’ B).
eapply l2_11;try apply H2;Between.

By unicity of the segment construction, we know that B′′ = B′.

assert (B’’=B’).
apply construction_unicity with
(Q:=A) (A:=B) (B:=B’’) (C:=B) (x:=B’’) (y:=B’);Between...
smart_subst B’’.

We know that FSC

(
BCD′C′

B′C′DC

)

(The points form a five segments configuration).

assert (FSC B C D’ C’ B’ C’ D C).
unfold FSC;repeat split;unfold Col;Between;sTarski.
2:eapply cong_transitivity.
2:apply H7.
2:sTarski.
apply l2_11 with (A:=B) (B:=C) (C:=D’) (A’:=B’) (B’:=C’) (C’:=D);
Between;sTarski;esTarski.

Hence C′D′ ≡ CD (because if B �= C the five segments axiom gives the conclu-
sion and if B = C we can use the hypotheses).

assert (Cong C’ D’ C D).
cases_equality B C.
(* First case *)
treat_equalities.
eapply cong_transitivity.
apply cong_commutativity.
apply H11.
Tarski.
(* Second case *)
apply cong_commutativity.
eapply l4_16;try apply H3...

7 The lemma 2.11 states that β A B C ∧ β A′ B′ C′ ∧ AB ≡ A′B′ ∧ BC ≡ B′C′ ⇒
AC ≡ A′C′.
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Using the axiom of Pasch, there is a point E such that :

β C E C′ ∧ β D E D′

assert (exists E, Bet C E C’ /\ Bet D E D’).
eapply inner_pash;Between.
DecompExAnd H13 E.

We omit the rest of the formal proof.

We can deduce that IFS

(
ded′c
ded′c′

)

and IFS

(
cec′d
cec′d′

)

. Hence EC ≡ EC′ and

ED ≡ ED′. Suppose that C �= C′. We have to show that D = D′8. From the
hypotheses, we can infer that C �= D′. Using the segment construction axiom,
we know that there are points P , Q and R such that :

β C′ C P ∧ CP ≡ CD′ and β D′ C R ∧ CR ≡ CE and β P R Q ∧ RQ ≡ RP

Hence FSC

(
D′CRP
PCED′

)

, so RP ≡ ED′ and RQ ≡ ED. We can infer that

FSC

(
D′EDC
PRQC

)

, so using lemma 2.11 we can conclude that D′D ≡ PQ and

CQ ≡ CD (because the case D′ �= E is solved using the five segments axiom,
and in the other case we can deduce that D′ = D and P = Q). Using the
theorem 4.179, as R �= C and R, C and D′ are collinear we can conclude that
D′P ≡ D′Q. As C �= D′, Col CD′B and Col CD′B′, we can also deduce that
BP ≡ BQ and B′P ≡ B′Q. As C �= D′, we have B �= B′ and as Col BC′B′

we have C′P ≡ C′Q. As C �= C′ and Col C′CP we have PP ≡ PQ. Using the
identity axiom for equidistance, we can deduce that P = Q. As PQ ≡ D′D, we
also have D = D′. �

5.3 About Degenerated Cases

Every paper about the formalization of geometry, in particular those about
Hilbert’s foundations of geometry [2,4] emphasizes the problem of the degener-
ated cases. In geometry, the degenerated cases are limit cases such as when two
points are equals, three points are collinear or two lines are parallel. The formal
proof of the theorems in the degenerated cases is often tedious and even some-
times difficult. These cases often do not even appear in the informal proof10. In
order to limit the size of the proofs, we tried to automate some tasks. These pieces
of automation should not be compared with the highly successful decision proce-
dures for geometry, the goal is just to automate some easy but very tedious proofs
8 Note that this step uses the decidability of equality between two points.
9 The theorem 4.17 states that A �= B ∧ ColABC ∧ AP ≡ AQ ∧ BP ≡ BQ ⇒ CP ≡

CQ.
10 It seems that degenerated cases play the same role in geometry as α-conversion

in lambda calculus: they are a great source of difficulties in the context of a
mechanization.
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and, as stated before, as our goal is to build foundations for the implementation
of decision procedures we can not use these more powerful procedures.

The main tactic to deal with degenerated cases is called treat_equalities.
The basic idea is to propagate information about degenerated cases. For instance,
if we know that A = B and AB ≡ CD we can deduce that C = D. This is very
simple but it shortens the proofs of the degenerated cases quite effectively.

Moreover, we think that a source of degenerated cases come from the axiom
system. In our personal experience the formalization of geometry using Hilbert
axioms lead to far more degenerated cases because the axioms are not always
stated in the most general and uniform way. We think that Tarski’s geometry
is a good candidate to mechanization because it is very simple, it has good
meta-mathematical properties (cf [17]) and it produces few degenerated cases.

5.4 Comparison with Other Formalizations

Compared to Frédérique Guilhot formalization [10], our development should be
considered low level. Our formalization has the advantage of being based on the
axiom system of Tarski which is of an extreme simplicity: two predicates and
eleven axioms. But this simplicity has a price, our formalization is not adapted
to the context of education. Indeed, some intuitively simple properties are hard
to prove in this context. For instance, the proof of the existence of the midpoint
of segment is obtained only at the end of the eighth chapter after about 150
lemmas and 4000 lines of proof. Moreover, the small number of axioms imposes
a scheduling of the lemmas which is not always intuitive. Indeed, some simple
intuitive properties can only be proved late in the development. For instance
the transitivity properties for collinearity are only proved in the chapter 6, this
means that in the first fifth chapters we have to live in a world where we do not
assume that collinearity has some transitivity properties.

Compared with formalizations using Hilbert’s axiom system, we think that,
as stated in the previous section, the use of Tarski’s axiom system leads to more
uniform proofs with less degenerated cases. Note that there are degenerated
cases which are inherent to a statement: the statement is false otherwise. There
are also degenerated cases which are inherent to the formulation of a statement,
if one starts with an axiom system which contains numerous degenerated cases
then the proofs of the first lemmas have to deal with these cases to obtain more
uniform statements. The use of Tarski’s axiom system has also the advantage
that, as it is based only on points, it can be easily generalized to other dimensions
by just changing the dimension axiom. In practice, in the context of a formal
proof, this allows to prove the lemmas which do not use the dimension axiom only
once. On the other end using Hilbert’s axiom system, to change the dimension
of the space, the language and axioms have to be changed and the proofs as well,
for dimension 3 for instance, it is necessary to assume the existence of planes.

5.5 Classical vs. Intuitionist Logic

Our formalization of Tarski’s geometry is performed in the system Coq. As the
logic behind Coq is constructive, we need to tell Coq explicitly when we need
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classical logic. This is the case in this development. It appears quite often in
the proofs that we need to distinguish between two cases such that A = B
and A �= B or ColABC and ¬ColABC. This kind of reasoning relies on the
decidability of point equality and collinearity. We proved these two facts using
the excluded middle rule.

6 Future Work and Conclusion

A natural extension of our work consist in mechanizing the remaining chapters
of [6] and proving the axioms of Hilbert. This work is under progress. We also
plan to enrich our formalization to use it as a foundation for other formal Coq
developments about geometry such as Frédérique Guilhot formalization of geom-
etry as it is presented in the french curriculum [10] and our implementation in
Coq of the area method of Chou, Gao and Zhang [14]. A longer-term challenge
would be to perform a systematic development of geometry similar to the book
of Schwabhäuser, Szmielew and Tarski but in the context of a constructive ax-
iom system such as the axiom system of von Plato [24] which has already been
formalized in the Coq proof assistant by Gilles Khan [25].

We have presented the mechanization of the proofs of over 150 lemmas in the
context of Tarski’s geometry. This includes the formal proof that the simplifica-
tions of the first version of Tarski’s axiom system are corrects. Our main con-
clusion is that Tarski axiom system lead to more uniform proofs than Hilbert’s
axiom system and so it is better suited for a formalization.

Availability

The full Coq development with the formal proofs and hypertext links to ease
navigation can be found at the following url:

http://www.lix.polytechnique.fr/Labo/Julien.Narboux/tarski.html
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Abstract. The paper deals with a problem of finding natural geometry
problem, that is, not specifically built up for the only purpose of hav-
ing some concrete property, where the hypothesis is not described by a
radical ideal. This problem was posed by Chou long ago. Regular poly-
gons in the Euclidean space Ed and their existence in spaces of various
dimensions are studied by the technique of Gröbner bases. When prov-
ing that regular pentagons and heptagons span spaces of even dimension
one encounters the case that the ideal describing the hypotheses is not
radical. Thus, in order to prove that H ⇒ T one needs to show that T
belongs to the radical of the ideal describing H.

1 Introduction

In the paper regular polygons in the Euclidean space Ed are studied by the
method which is based on Gröbner bases computation. Properties of regular
pentagons and regular heptagons, especially their existence in spaces of various
dimensions, are investigated (Theorem 1, Theorem 2). In addition, a sufficient
and necessary condition for a heptagon in Ed to be planar is given (Theorem 3).
The novelty of the paper are the proofs of Theorems 1, 2 filling a gap as to the
problem posed by Chou, the Theorem 3 seems to be new.

Given a set H of hypotheses h1 = 0, h2 = 0, . . . , hr = 0 we are to prove that
from these hypotheses the conclusion T, given by the equation c = 0, follows.
By the theory of automatic theorem proving, in accordance with the Hilbert’s
Nullstellensatz [9], we are to show that c belongs to the radical

√
I, where we

denote I = (h1, h2, . . . , hr). In practice we often encounter the case
√

I = I
which allows to show that c is an element of the ideal I. S. Ch. Chou in his
well-known book Mechanical Geometry Theorem Proving [8], where over five
hundred examples are given, on the page 78 writes that “ ... for all theorems we
have found in practice, I =

√
I ”. Exploring properties of regular polygons in

Ed we can meet the case in which it is necessary to show that the conclusion
polynomial belongs to the radical ideal

√
I. Regular polygons yield a suitable

topic to investigate them from this point of view. Let us give a brief introduction
into the interesting history of regular polygons [21].

Before Christmas 1969 two chemists A. Dreiding and J. D. Dunitz visited the
well-known mathematician B. L. van der Waerden. The latter talked about fixed
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and movable forms of cyclic hexane and octane. He also mentioned cyclic pentane
and insisted that a skew pentagon with the same side lengths and the same angles
must necessary lie in a plane. Van der Waerden was surprised at this statement and
asked for explanation. Already on the 10th February 1970 at the Mathematics Col-
loquium in Zürich B.L. van der Waerden held a lecture “Ein Satz über räumliche
Fünfecke” whose only topic was a proof of the following theorem [21]:

A skew pentagon with equal sides and equal angles is planar
After the publication of the paper [21] this theorem was proved in a short time by a
number ofmathematicians in a few ways, see [6], [15], [22]. B. Grünbaum [11] writes
that this property of a regular pentagon — i.e. equilateral and equiangular —
was known to A. Auric [1] in 1911. Detailed information is described in the survey
article [11], where it is stated that a total characterization of regular n-gons was
done in 1962 by Russians V. A. Efremovitch and Ju. S. Iljjashenko [10].

2 Preliminaries

In this section we give some notions both from the theory of polygons and from
the theory of automatic theorem proving that we will need in the next part.
Remember that all subscripts are taken modulo n.

A polygon P0, P1, . . . , Pn−1 whose sides have the same length, i.e. |PjPj+1|
is constant for all j = 0, 1, . . . , n − 1, we call equilateral. Similarly, an n-gon is
k-equilateral if |PjPj+ν | = dν for all j = 0, 1, . . . , n−1 and ν = 1, 2, . . . , k, where
the constants dν are parameters.
The definition of a regular polygon is as follows [11]:

A polygon P0, P1, . . . , Pn−1 is called regular if for all ν = 1, 2, . . . , n − 1 the
lengths of segments PjPj+ν are independent of j, or in other words, if a polygon
is (n − 1)-equilateral.

Thus an equilateral n-gon is 1-equilateral with the parameter d1, 2-equilateral
n-gon is equilateral and equiangular with parameters d1, d2, etc. If we introduce
d0 = 0 then a regular n-gon is characterized by relations

|PjPj+ν | = dν , for all j, ν = 0, 1, . . . , n − 1,

which means that all diagonals of the “same” kind (next but one vertex, next
but two vertices, . . . ) have the same length.

The volume Vn of a simplex A1A2 . . . An+1 in En can be expressed in terms
of all mutual distances |AiAj | = aij between vertices of a simplex in the form of
the so called Cayley–Menger’s determinant [2]:

Denoting a2
ij = dij then for the volume Vn of a simplex A1, A2, . . . , An+1

(−1)n+12n(n!)2V 2
n = Dn =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0 1 1 1 ... 1
1 0 d12 d13 ... d1,n+1

1 d21 0 d23 ... d2,n+1

... ... ... ... ... ...
1 dn+1,1 dn+1,2 ... ... 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (1)
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We say that an n-gon has dimension s, if s is dimension of the least subspace
of an affine space Ad in which an n-gon is involved or, which is equivalent, if an
n-gon spans a s-dimensional space.

We shall investigate the dimension of a regular polygon in Ed by means of
Gröbner bases computation in automated theorem proving. Let us give basic
definitions and theorems [9], [12], [18], [19], [23].

Let K be a field of characteristic 0, for instance the field of rational numbers
Q, and L an algebraically closed field containing K, for instance the field of
complex numbers C. Further denote by K[x1, . . . , xn] the ring of polynomials of
n indeterminates x = (x1, . . . , xn) with coefficients in the field K.

Automatic theorem proving deals with geometric statements which are of the
form H ⇒ T , where H is a set hypotheses

h1(x) = 0, h2(x) = 0, . . . , hr(x) = 0

and T is a set of conclusions (theses)

c1(x) = 0, c2(x) = 0, . . . , cs(x) = 0,

where h1, . . . , hr, c1, . . . , cs ∈ K[x1, . . . , xn]. Without loss of generality assume
that the set of conclusions T contains only one conclusion which we denote by
c, i.e.

c(x) = 0.

The algebraic form of a statement H ⇒ T is as follows

∀x ∈ Ln, h1(x) = 0, . . . , hr(x) = 0 ⇒ c(x) = 0. (2)

We say that a statement (2) is generally true if the hypotheses variety V (H) =
{x; h1(x) = 0, . . . , hr(x) = 0} is a subset of the conclusion variety V (T ) =
{x; c(x) = 0}.

The next theorem gives an instruction how to show that (2) is generally true [18]:

The following statements are equivalent:

a) The statement (2) is generally true,

b) c ∈
√

(h1, . . . , hr),

c) 1 ∈ (h1, . . . , hr, ct − 1).

Thus to prove that (2) is generally true it suffices to show that the constant
polynomial 1 lies in the ideal

J = (h1, . . . , hr, ct − 1),

where t is a slack variable. By the previous theorem we determine the normal
form of 1 with respect to the Gröbner basis of the ideal J = (h1, . . . , hr, ct − 1)
for some prescribed order of variables. In the computer algebra system CoCoA1

1 Software CoCoA is freely distributed at the address http://cocoa.dima.unige.it
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we use the command NF(1,J). If the answer is 0 then it means that 1 ∈ J and
(2) is generally true.

Another way how to find out whether the constant 1 belongs to the ideal J is
to compute directly the Gröbner basis of the ideal J using any term order. This is
useful especially in the case if we use the software which does not automatically
compute the normal form using the Gröbner basis of a set of generators.

If we do not manage to prove that the statement (2) is generally true, it still
does not mean that the statement is not valid. It can happen that a statement
is not generally true because of missing non-degeneracy conditions

g1(x1, . . . , xn) �= 0, . . . , gs(x1, . . . , xn) �= 0. (3)

We say that the statement (2) is generically true if the hypotheses variety
V (H ′) = {x; h1(x) = 0, . . . , hr(x) = 0, g1(x) �= 0, . . . , gs(x) �= 0} is a subset
of the conclusion variety V (T ) = {x; c(x) = 0}.

In order to prove a statement

∀x ∈ Ln, h1(x) = 0, . . . , hr(x) = 0, g1(x) �= 0, . . . , gs(x) �= 0 ⇒ c(x) = 0. (4)

it suffices to show, in accordance with the above theorem, that the constant
polynomial 1 belongs to the ideal

I ′ = (h1, . . . , hr, g1t1 − 1, . . . , gsts − 1, ct − 1),

where t1, . . . , ts, t are slack variables.
Most of valid statements are generically true. Non-degeneracy conditions of

investigated objects are usually not involved in the statements. We tacitly sup-
pose that a triangle is a real triangle and not a segment, that a segment is a real
segment and not a pair of identical points, that a circle has the non-zero radius,
etc. We say that such objects are generic.

Remark 1. In practice it is mostly sufficient to show that the conclusion polyno-
mial c is in the ideal I = (h1, . . . , hr) (Ideal Membership). The normal form of
a polynomial c with respect to the Gröbner basis of the ideal I can be found by
a command NF(c,I). If we get the answer 0 then a statement is generally true.
Otherwise we have to apply the stronger criterion and find out whether 1 is an
element of the ideal J = I ∪ {ct − 1} (Radical Membership).

In the next part we will give an example of I �
√

I when c is not in the ideal I,

but it is an element of the radical
√

I.

3 Regular Pentagon

Consider the theorem [21]:

Theorem 1. A regular skew pentagon ABCDE in the Euclidean space E3 is
given. Then ABCDE is a planar pentagon.
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We will prove this theorem using the theory of automated theorem proving.
Assume that a pentagon is equilateral with the side length a and equiangular
with the length of a diagonal u.

Let us introduce a Cartesian coordinate system such that for the vertices
of a pentagon A = [a, 0, 0], B = [b1, b2, 0], C = [c1, c2, c3], D = [d1, d2, d3],
E = [0, 0, 0], Fig. 1. Then the following relations are fulfilled:

z

x

y

E=[0,0,0] A=[a,0,0]

B=[b1,b2,0]

C=[c1,c2,c3]

D=[d1,d2,d3]

Fig. 1. Regular pentagon in E3 is planar

|AB| = a ⇔ h1 : (b1 − a)2 + b2
2 − a2 = 0,

|BC| = a ⇔ h2 : (c1 − b1)2 + (c2 − b2)2 + c2
3 − a2 = 0,

|CD| = a ⇔ h3 : (d1 − c1)2 + (d2 − c2)2 + (d3 − c3)2 − a2 = 0,
|DE| = a ⇔ h4 : d2

1 + d2
2 + d2

3 − a2 = 0,
|AC| = u ⇔ h5 : (c1 − a)2 + c2

2 + c2
3 − u2 = 0,

|BD| = u ⇔ h6 : (d1 − b1)2 + (d2 − b2)2 + d2
3 − u2 = 0,

|CE| = u ⇔ h7 : c2
1 + c2

2 + c2
3 − u2 = 0,

|DA| = u ⇔ h8 : (d1 − a)2 + d2
2 + d2

3 − u2 = 0,
|EB| = u ⇔ h9 : b2

1 + b2
2 − u2 = 0.

The points A, B, C, D, E are complanar ⇔ A, B, C, E and A, B, D, E are com-
planar ⇔

z1 :

∣
∣
∣
∣
∣
∣
∣
∣

0 0 0 1
a 0 0 1
b1 b2 0 1
c1 c2 c3 1

∣
∣
∣
∣
∣
∣
∣
∣

= 0 and z2 :

∣
∣
∣
∣
∣
∣
∣
∣

0 0 0 1
a 0 0 1
b1 b2 0 1
d1 d2 d3 1

∣
∣
∣
∣
∣
∣
∣
∣

= 0. (5)

We shall explore whether both conclusion polynomials z1, z2 belong to the radical
of I = (h1, h2, . . . , h9). We will investigate each polynomial z1, z2 separately. For
z1 we find out whether 1 ∈ J, where J = I ∪ {ab2c3t − 1}. We get

Use R::=Q[aub[1..3]c[1..3]d[1..3]t];
J:=Ideal((b[1]-a)^2+b[2]^2-a^2,(c[1]-b[1])^2+(c[2]-b[2])^2+c[3]^2
-a^2,(d[1]-c[1])^2+(d[2]-c[2])^2+(d[3]-c[3])^2-a^2,d[1]^2+d[2]^2+
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d[3]^2-a^2,(c[1]-a)^2+c[2]^2+c[3]^2-u^2,(d[1]-b[1])^2+(d[2]-
b[2])^2+d[3]^2-u^2,c[1]^2+c[2]^2+c[3]^2-u^2,(d[1]-a)^2+d[2]^2+
d[3]^2-u^2,b[1]^2+b[2]^2-u^2,ab[2]c[3]t-1);
NF(1,J);

that for the normal form NF(1,J)=0 which means that the points A, B, C, E are
complanar.

Similarly we will show that the points A, B, D, E are complanar as well.
Whence we can conclude — a regular skew pentagon ABCDE is planar.

In the last proof we examined the normal form NF(1,J), where the ideal J
contained the negated conclusion polynomial ab2c3t − 1. The result NF(1,J)=0
means that the conclusion polynomial ab2c3 is an element of the radical

√
I from

which ab2c3 = 0 follows. Usually it suffices to find out whether the conclusion
polynomial ab2c3 belongs to the ideal I. Let us do it. We get

Use R::=Q[aub[1..3]c[1..3]d[1..3]];
I:=Ideal((b[1]-a)^2+b[2]^2-a^2,(c[1]-b[1])^2+(c[2]-b[2])^2+c[3]^2
-a^2,(d[1]-c[1])^2+(d[2]-c[2])^2+(d[3]-c[3])^2-a^2,d[1]^2+d[2]^2+
d[3]^2-a^2,(c[1]-a)^2+c[2]^2+c[3]^2-u^2,(d[1]-b[1])^2+(d[2]-
b[2])^2+d[3]^2-u^2,c[1]^2+c[2]^2+c[3]^2-u^2,(d[1]-a)^2+d[2]^2+
d[3]^2-u^2,b[1]^2+b[2]^2-u^2);
NF(ab[2]c[3],I);

the non zero result ab2c3. Hence the polynomial ab2c3 does not belong to the
ideal I. However, ab2c3 belongs to the radical

√
I, i.e. there exists a natural

number m such that (ab2c3)m belongs to the ideal I. It is easy to verify that
m = 3, i.e. (ab2c3)3 ∈ I.

Another proof of the fact that a regular pentagon in a space E3 is planar, is
based on the well-known theorem about the volume of a simplex expressed by
the Cayley–Menger’s determinant (1). This kind of proof will be used later in
the case of a regular heptagon.

We will prove the Theorem 1 in the generalized form [6]:

A regular pentagon A1A2A3A4A5 lies either in E4 or in E2, i.e. its dimension
is 4 or 2.

The proof, which is due to O. Bottema [6], is as follows.
If we put Vn = 0 then by (1) also Dn = 0 and points A1, A2, . . . , An+1 span a
space whose dimension is less than n.

Minimal dimension of a space in which an arbitrary pentagon can be con-
sidered is four. Let A1A2A3A4A5 be a regular pentagon in an Euclidean space
E4. The vertices of a pentagon in E4 form a simplex whose volume V4 can be
expressed in terms of all distances between the vertices of a simplex. Denote the
lengths of its sides and diagonals by

|A1A2| = |A2A3| = |A3A4| = |A4A5| = |A5A1| = a,

|A1A3| = |A3A5| = |A5A2| = |A2A4| = |A4A1| = b.
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By (1) for a simplex A1A2A3A4A5 in E4 it holds

D4 =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0 1 1 1 1 1
1 0 a2 b2 b2 a2

1 a2 0 a2 b2 b2

1 b2 a2 0 a2 b2

1 b2 b2 a2 0 a2

1 a2 b2 b2 a2 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= −5(a2 + ab − b2)2(a2 − ab − b2)2. (6)

Suppose that D4 = 0. This means that dimension of the pentagon A1A2A3A4A5

is less than or equal to three.
Now consider four vertices of A1A2A3A4A5, for instance A1, A2, A3, A4, which

form a simplex in E3 and explore its volume. By (1) we omit the last row and
column in the determinant (6). We get

D3 =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0 1 1 1 1
1 0 a2 b2 b2

1 a2 0 a2 b2

1 b2 a2 0 a2

1 b2 b2 a2 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= −2(a2 + ab − b2)(a2 − ab − b2)(a2 + b2). (7)

Hence
D4 = 0 ⇒ D3 = 0. (8)

In order to prove (8) algebraically, we necessarily need to show that D3 belongs
to the radical ideal

√
D4 since the polynomial D3 is not an element of the ideal

generated by D4. We can see this without the use of a computer.
The same result we obtain for remaining quadruples of the vertices of a pen-

tagon. Thus, if dimension of the pentagon A1A2A3A4A5 is not 4 then it is neither
3. Therefore the pentagon A1A2A3A4A5 must be planar.

Fig. 2. Convex and non-convex regular pentagons
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Remark 2. A regular pentagon A1A2A3A4A5 in E2 with the length of side a
and diagonal b obeys by (6) and (7) the equation

(a2 + ab − b2)(a2 − ab − b2) = 0. (9)

The equation a2 +ab− b2 = 0 holds for a convex regular pentagon, Fig. 2 on the
left, from which a/b = (−1 +

√
5)/2 = 0.618... follows.

From a2 − ab − b2 = 0 we get a/b = (1 +
√

5)/2 = 1.618... which characterizes
non-convex star regular pentagons, Fig. 2 on the right.
From (6) and (7) we get the theorem [6]:

A regular pentagon with the length of sides a and diagonals b is planar if and only
if the condition (9) holds. The equation a2 + ab − b2 = 0 gives a convex regular
pentagon, whereas a2 − ab − b2 = 0 leads to a non-convex regular pentagon.

4 Regular Heptagon

The case of a regular pentagon from the previous part is well-known and has been
published many times. On the other hand a regular heptagon and its existence
in spaces of various dimensions has not been mentioned explicitly so many times
as a regular pentagon. This is likely due to the following general theorem on
regular polygons with an arbitrary number of vertices [4], [10], [11]:

A regular polygon with an odd number of vertices has even dimension.

Let us look at a regular heptagon in detail. We will investigate its properties
using the method which is based on Gröbner bases computation. We will apply
the method which was used by a regular pentagon and which is based on the
Cayley–Menger determinant.

Let A1A2A3A4A5A6A7 be a regular heptagon. In accordance with the defi-
nition a regular heptagon is 3-equilateral. Here we have to pay attention to the

Fig. 3. An equilateral and equiangular heptagon which is not regular
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fact that the conditions being equilateral and equiangular, which were sufficient
for a pentagon to be regular, do not suffice for a regular heptagon. For instance
in Fig. 3 we see an equilateral and equiangular heptagon which is not regular
since |A7A3| �= |A1A4|, see [11].

In a regular heptagon A1A2A3A4A5A6A7 let us denote

|A1A2| = |A2A3| = |A3A4| = |A4A5| = |A5A6| = |A6A7| = |A7A1| = a,

|A1A3| = |A3A5| = |A5A7| = |A7A2| = |A2A4| = |A4A6| = |A6A1| = b,

|A1A4| = |A4A7| = |A7A3| = |A3A6| = |A6A2| = |A2A5| = |A5A1| = c.

Consider a heptagon in a six dimensional Euclidean space E6 which is a space
of minimal dimension in which an arbitrary heptagon can be placed. By the
formula (1) for the volume of a simplex A1A2A3A4A5A6A7 in E6 it holds

D6 =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0 1 1 1 1 1 1 1
1 0 a2 b2 c2 c2 b2 a2

1 a2 0 a2 b2 c2 c2 b2

1 b2 a2 0 a2 b2 c2 c2

1 c2 b2 a2 0 a2 b2 c2

1 c2 c2 b2 a2 0 a2 b2

1 b2 c2 c2 b2 a2 0 a2

1 a2 b2 c2 c2 b2 a2 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= (10)

= −7(a6 + 3a4b2 − 4a2b4 + b6 − 4a4c2 − a2b2c2 + 3b4c2 + 3a2c4 − 4b2c4 + c6)2.

Now we express the volume of a simplex A1A2A3A4A5A6 in E5 deleting the last
row and column in the previous determinant (10). The result is

D5 = 2(2a4 −3a2b2 +2b4 −3a2c2 −3b2c2 +2c4)(a6 +3a4b2 −4a2b4 + b6 −4a4c2 −
a2b2c2 + 3b4c2 + 3a2c4 − 4b2c4 + c6).

The same result we obtain for other 6-tuples of the vertices of a heptagon. The
comparison of the determinants D6 and D5 gives

D6 = 0 ⇒ D5 = 0. (11)

To prove (11) algebraically, we immediately see that the polynomial D5 is an
element of the radical

√
D6. Note that D5 does not belong to the ideal which is

generated by D6.
Hence, if dimension of a regular heptagon is not six then it is neither five.

Therefore the heptagon must lie in the space of dimension four or less.
Suppose that D4 = 0 for all 5-tuples of the vertices of a hepthagon. It is

obvious that, see Fig. 4, it suffices to explore three simplices A1A2A3A4A5,
A1A2A3A4A6, and A1A2A3A5A6 in E4. For a simplex A1A2A3A4A5 we get

D4(12345) = −(a2 − bc− c2)(a2 + bc− c2)(a4 −12a2b2 +8b4 +2a2c2 −5b2c2 + c4)

and analogously

D4(12346) = −(a2 −b2 −ac)(a2 −b2 +ac)(a4 +2a2b2 +b4 −5a2c2 −12b2c2 +8c4),
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D4(12356) = (ab − b2 + c2)(ab + b2 − c2)(8a4 − 5a2b2 + b4 − 12a2c2 + 2b2c2 + c4).

The condition D4 = 0, i.e. the validity of the equations

D4(12345) = 0, D4(12346) = 0, D4(12356) = 0,

means that a heptagon A1A2A3A4A5A6A7 is of dimension three or less.
Investigating the volume of a tetrahedron A1A2A3A4 in E3 we obtain

D3(1234) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0 1 1 1 1
1 0 a2 b2 c2

1 a2 0 a2 b2

1 b2 a2 0 a2

1 c2 b2 a2 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= −2(a2 − b2 + ac)(a2 − b2 − ac)(a2 + 2b2 − c2).

Similarly, considering all quadruples of the vertices of a heptagon, we get another
three conditions:

D3(1235) = −2(a4b2 − 5a2b2c2 + b4c2 + a2c4),

D3(1245) = −2(a2 − bc − c2)(2a2 − b2 + c2)(a2 + bc − c2),

D3(1246) = −2(a2 − b2 − 2c2)(ab + b2 − c2)(ab − b2 + c2).

We will prove that
D4 = 0 ⇒ D3 = 0, (12)

that is, from the hypotheses

D4(12345) = 0, D4(12346) = 0, D4(12356) = 0

the conclusions

D3(1234) = 0, D3(1235) = 0, D3(1245) = 0, D3(1246) = 0

follow.
Let us denote by I = (D4(12345), D4(12346), D4(12356)), and J = (D3(1234),

D3(1235), D3(1245), D3(1246)) the respective ideals and compute their radicals.
In CoCoA we enter

Use R::=Q[abc];
I:=Ideal(-(a^2-bc-c^2)(a^2+bc-c^2)(a^4-12a^2b^2+8b^4+2a^2c^2-
5b^2c^2+c^4),-(a^2-b^2-ac)(a^2-b^2+ac)(a^4+2a^2b^2+b^4-5a^2c^2
-12b^2c^2+8c^4),(ab-b^2+c^2)(ab+b^2-c^2)(8a^4-5a^2b^2+b^4-12a^2c^2
+2b^2c^2+c^4));
Radical(I);

and get
√

I = (a4−2a2c2−b2c2+c4, a2b2−a2c2−3b2c2+2c4, b4−a2c2−5b2c2+3c4). (13)

The same result we acquire for
√

J. Hence, the radicals of both ideals I and J
are alike.
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Thus we proved even more then (12), namely that D4 = 0 ⇔ D3 = 0. Whence,
if dimension of a regular heptagon is not four then it is neither three. Therefore a
heptagon A1A2A3A4A5A6A7 must lie in a plane. We proved the theorem [4], [10]:

Theorem 2. A regular heptagon lies either in the Euclidean space E6 or in E4

or in E2, i.e. its dimension is either 6 or 4 or 2.

Remark 3. If we apply the weaker criterion in the theorem above to investigate
whether the polynomial D3(1234) is an element of the ideal I instead of its
radical

√
I, we get

Use R::=Q[abc];
I:=Ideal(-(a^2-bc-c^2)(a^2+bc-c^2)(a^4-12a^2b^2+8b^4+2a^2c^2-
5b^2c^2+c^4),-(a^2-b^2-ac)(a^2-b^2+ac)(a^4+2a^2b^2+b^4-5a^2c^2
-12b^2c^2+8c^4),(ab-b^2+c^2)(ab+b^2-c^2)(8a^4-5a^2b^2+b^4-12a^2c^2
+2b^2c^2+c^4));
NF(-2(a^2-b^2+ac)(a^2-b^2-ac)(a^2+2b^2-c^2),I);

non zero result −2a6 +6a2b4 −4b6 +4a4c2 +2b4c2 −2a2c4. Hence the polynomial

D3(1234) = −2(a2 − b2 + ac)(a2 − b2 − ac)(a2 + 2b2 − c2)

is not an element of the ideal I. We again encounter the case in which it is
necessary to examine the membership of the conclusion polynomial D3(1234)
in the radical

√
I. A close inspection shows that the polynomial (D3(1234))3

belongs to the ideal I.

The results above enable us to characterize regular heptagons lying in a plane.
A theorem holds:

Theorem 3. A regular heptagon A1A2 . . . A7 in Ed with lengths of sides and
diagonals a = |AiAi+1|, b = |AiAi+2|, c = |AiAi+3|, where i = 1, 2, . . . , n − 1, is
planar if and only if

(a2 − bc − c2)(a2 + bc − c2) = 0,
(a2 − b2 − ac)(a2 − b2 + ac) = 0,
(ab − b2 + c2)(ab + b2 − c2) = 0.

(14)

Proof. First suppose that a regular heptagon A1A2 . . . A7 is planar. Denote the
equations in (14) successively by h1 = 0, h2 = 0, h3 = 0. Let us prove for instance
the first equation h1 = 0. We will show that the polynomial h1 belongs to the
radical

√
I (13), where I = (D4(12345), D4(12346), D4(12356)). Computation

in CoCoA gives

Use R::=Q[abc];
I:=Ideal(-(a^2-bc-c^2)(a^2+bc-c^2)(a^4-12a^2b^2+8b^4+2a^2c^2-
5b^2c^2+c^4),-(a^2-b^2-ac)(a^2-b^2+ac)(a^4+2a^2b^2+b^4-5a^2c^2
-12b^2c^2+8c^4),(ab-b^2+c^2)(ab+b^2-c^2)(8a^4-5a^2b^2+b^4-12a^2c^2
+2b^2c^2+c^4));
NF((a^2-bc-c^2)(a^2+bc-c^2),Radical(I));

the result 0. Similarly we prove other equations in (14).
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Conversely, suppose that the equations (14) hold. We are to prove that D4 = 0,
that is, D4(12345) = D4(12346) = D4(12356)= 0. Let us prove that D4(12346)=
0. We will show that the polynomial D4(12346) belongs to the ideal K =
(h1, h2, h3). The normal form of D4(12346) with respect to the Gröbner basis of
the ideal K

Use R::=Q[abc];
K:=Ideal((a^2-bc-c^2)(a^2+bc-c^2),(a^2-b^2-ac)(a^2-b^2+ac),
(ab-b^2+c^2)(ab+b^2-c^2));
NF(-(a^2-b^2-ac)(a^2-b^2+ac)(a^4+2a^2b^2+b^4-5a^2c^2-12b^2c^2
+8c^4),K);

equals 0. Similarly we show that D4(12345) = 0 and D4(12356) = 0.
The theorem is proved.

Remark 4. If K = (h1, h2, h3) is the ideal generated by the polynomials on the
left sides of (14) then

√
I =

√
K. Hence, the ideals I and K have the same

radicals. From this the Theorem 3 follows.

Fig. 4. Convex regular heptagon

Remark 5. To prove that the polynomials h1, h2, h3 on the left sides of (14)
belong the ideal I, fails. All these polynomials belong to the radical

√
I. It is

easy to show that h4
1, h

4
2 and h4

3 belong to the ideal I.

By the Theorem 3 we can compute lengths of sides and diagonals a, b, c of a
regular heptagon in E2. The system of equations

a2 + bc − c2 = 0, a2 − b2 + ac = 0 (15)

characterizes a convex regular heptagon, Fig. 4.
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Fig. 5. Non-convex 2-regular and 3-regular heptagons

Similarly, we shall describe the equations for the remaining two non-convex
star regular heptagons, Fig. 5. For a heptagon in Fig. 5 on the left (so called
2-regular heptagon) it holds

a2 − bc − c2 = 0, ab − b2 + c2 = 0,

and for a heptagon in Fig. 5 on the right (so called 3-regular heptagon)

a2 − b2 − ac = 0, ab + b2 − c2 = 0.

Regular polygons play an important role in the isoperimetric inequality. The
isoperimetric inequality for n-gons in a plane reads [3]:

From all n-gons in a plane of a given perimeter, a regular n-gon has the greatest
area.

An analogue of the isoperimetric inequality in a space is as follows [5]:

From all skew n-gons in Ed with the given perimeter find an n-gon of the max-
imal volume of its convex hull.

This spatial analogue of the isoperimetric inequality for n-gons was success-
fully solved in spaces of even dimension d, where extremal n-gons are more-
dimensional analogies of regular polygons [17], [20]. In a space of odd dimension
d this problem has not been solved yet. A few special cases in E3 for a skew
quadrilateral [16], pentagon and hexagon [13], [14] have been solved. Especially
an extremal heptagon in E3 is of interest since by the theory above it can not
be regular. Hence a natural question arises, what do extremal n-gons in E3 for
n ≥ 7 look like?
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Čas. pro pěst. mat. 84, 93–103 (1959)
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E. Roanes-Maćıas and E. Roanes-Lozano

Universidad Complutense de Madrid, Facultad de Educación,
Dept. de Algebra, c/ Rector Royo Villanova s/n, 28040-Madrid, Spain

{roanes,eroanes}@mat.ucm.es
http://www.ucm.es/info/secdealg/ERL/

Abstract. A package for investigating problems about configuration
theorems in 3D-geometry and performing mechanical theorem proving
and discovery is presented. It includes the preparation of the problem,
consisting of three processes: defining the geometric objects in the config-
uration; determining the hypothesis conditions through a point-on-object
declaration method; and fixing the thesis conditions. After this prepara-
tion, methods based both on Groebner Bases and Wu’s method can be
applied to prove thesis conditions or to complete hypothesis conditions.
Homogeneous coordinates are used in order to treat projective problems
(although affine and Euclidean problems can also be treated). A Maple
implementation of the method has been developed. It has been used to
extend to 3D some classic 2D theorems.

1 Introduction

1.1 Antecedents and State of the Art

We had worked for some time in mechanical theorem proving using algebraic
techniques [1,2,3] and we were particularly interested in the cooperation of dy-
namic geometry systems (DGS) and computer algebra systems (CAS) for this
and other purposes.

Some existing DGS use other proving techniques. For instance Cabry Geom-
etry [4] is able to try to find counterexamples; Cinderella uses a probabilistic
method [5,6]; MathXp [7,8] uses an automated reasoning engine as prover and a
symbolic computation platform as solver...

Regarding the cooperation of DGS and CAS, different solutions have been
found:

– to develop a new DGS that is able to communicate with existing CAS (ex-
amples: Geother [9,10] and its corresponding Maple package Epsilon [11];
GDI [12,13,14])

– to develop a new piece of software that integrates a new DGS and a new CAS
that can communicate with each other (examples: Geometry Expert [15,16]
and Java Geometry Expert [17,18]; Geometry Expressions [19,20,21]).

F. Botana and T. Recio (Eds.): ADG 2006, LNAI 4869, pp. 171–188, 2007.
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(In fact, Geometry Expressions can also communicate, bidirectionally (!), with
the “external” CAS Maple and Mathematica.)

We thought an interesting alternative was software reuse [22,23]. Therefore,
we developed a connection between The Geometer’s Sketchpad (GSP) v.3 and
v.4 and Derive and Maple, denoted paramGeo [24]. It takes as input either a
GSP v.3 script or a GSP v.4 html description of the construction [25,26,27]
and translates it to Derive or Maple with a translator implemented “ad hoc”.
Finally, the output of the translator can be manipulated in Derive or Maple
(after loading the corresponding new geometric package). The goal is not only
automatic theorem proving and discovery but to input geometric data to the
CAS from the DGS for whatever use it is required. Therefore, it leaves the
control of the processes to the user.

One of the authors of GDI has adopted our idea of software reuse in his new
approaches to:

– a connection between the DGS Cabry Geometry and GSP and the CAS
Mathematica and CoCoA for geometric loci equations finding, denoted GLI
[28]. It uses the standard OpenMath [29] for the communication between the
DGS and the CAS

– a connection between the new version of the 3D-DGS Calques3D [30] and
the CAS CoCoA and Mathematica, denoted 3D-LD [31].

We have also studied possible 3D-extensions of classic 2D theorems, some of
which we have proven using a CAS (Ceva, Menelaus, Desargues...) [32,34,35,36].
Both the proofs and the implementations have been improved since these works
were presented, so we briefly describe then here again.

1.2 paramGeo3D

We have developed in the CAS Maple a package denoted paramGeo3D that is
convenient for introducing 3D geometric data to the CAS Maple. It can be used
for investigating problems about configuration theorems in 3D-geometry and
performing mechanical theorem proving and discovery. It includes the prepara-
tion of the problem, consisting of three processes: defining the geometric objects
in the configuration; determining the hypothesis conditions through a point-on-
object declaration method; and fixing the thesis conditions. After this prepara-
tion, methods based both on Groebner Bases and Wu’s method can be applied
to prove thesis conditions or to complete hypothesis conditions. It extends to 3D
the Maple package that paramGeo (2D) [24] included.

As happens with paramGeo, paramGeo3D leaves the control to the user and
is not only oriented to automatic theorem proving and discovery. Using Maple
also has the advantage of allowing to use Epsilon’s functions [11] (for instance
for obtaining a primary ideal decomposition when looking for the components
of an algebraic variety).

The main contribution of this work is to provide a convenient environment
for algebraic computation in 3D-geometry. The motivation is the lack of such
systems (specially if compared to the 2D case).
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The main idea underlying the contribution is that an adequate package written
in a CAS can be really time saving for doing algebraic computations in 3D-
geometry.

The package proves constructive configuration problems.
The article is illustrated with some applications of paramGeo3D to mechanical

theorem proving and discovery in 3D-geometry (some results are original to the
authors of this article).

Maple can plot 2D and 3D geometric objects (after loading the packages ge-
ometry and geom3D, respectively). But, in the 2D case, we did not use Maple for
plotting and found much more convenient to explore the problem with a dynamic
geometry system instead, as mentioned above. Therefore, as the next develop-
ment of the present work, we plan to connect paramGeo3D with Calques3D, as
done in 2D with GSP.

2 Preparations to Prove and Discover

2.1 Defining the Geometric Objects in a Configuration

Some of the objects can be directly defined and others are determined through
geometric operations. The directly defined objects are the initial points of the
configuration. They are defined by their coordinates, numeric or symbolic (the
latter considered as parameters).

The other objects are constructed through the adequate concatenation of
elementary operations, like: line or segment determined by two different points;
plane determined by three non-collinear points; plane parallel to another plane
through a point; intersection of two previously defined objects... (we are treating
a constructive geometry).

2.2 Introducing the Hypothesis Conditions

They are declared as membership relations between points and higher dimen-
sion geometric objects. To declare P = (p0, p1, p2, p3) as a point on the ob-
ject φ(x0, x1, x2, x3) = 0 is equivalent to impose that the hypothesis condi-
tion φ(p0, p1, p2, p3) = 0 is verified. The corresponding hypothesis polynomial
φ(p0, p1, p2, p3) is stored in a list, denoted LREL (List of RELations). The coor-
dinates of the points defined this way are called variables and they are stored in
another list, denoted V AR. They are easily distinguished (by this method) from
parameters, that are the non-numeric coordinates of the initial points (those
parameters are preserved along all subsequent calculations).

2.3 Fixing the Thesis Conditions

In most configuration problems, the thesis conditions are (or can be reduced to)
a P ∈ τ membership condition (where P is a point and τ is a geometric object)
or to a geometric relation among geometric objects in the configuration. In both
cases the thesis polynomials admits a τ(P ) form.
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3 Generating the Automatic Proof

The process of generation of the automatic proof is based on expressing the thesis
polynomials as an algebraic linear combination of the hypothesis polynomials.
To achieve this, we use methods based on the use of Groebner Bases (GB) [37,38]
or pseudo-divisions. They are summarized afterwards.

– Inmost applications, a simplemethod consisting of verifying that theGBof the
ideal generated by the hypothesis polynomials is equal to the GB of the ideal
generated by the hypothesis polynomials togetherwith the thesis polynomials,
can be used. It will be denoted EGB method (Equal Groebner Bases method).

This method has an advantage with respect to others: all thesis conditions
can be checked at the same time (instead of one by one, what is required by
other methods).

– The classic method is based on the radical membership algorithm [39] and
will be denoted hereinafter UGB method (Unit Groebner Basis method).

This method is very useful when the thesis polynomial is not in the
ideal generated by the hypothesis polynomials, but a power of the thesis
polynomial is in this ideal.

– A method based on pseudo-divisions is also offered. It essentially consists
of Wu’s method [40,41,42,43], but adapted to the way hypothesis conditions
are declared. (Let us underline that the coordinates of points on objects used
for defining hypothesis conditions must be selected in such a way that the
number of hypothesis polynomials and the number of variables are equal).
This method will be denoted RSP (Reduced Successive Pseudo-divisions).

This last method is also applied to automate the process of hypotheses
completion, following the ideas introduced by Kapur and Mundy [44] and
Recio and Vélez [45].

Let us give a brief description of the process we use to get new hypothesis
conditions, denoted newHypot. If the last pseudo-remainder, denoted ρ, ob-
tained when Wu’s method is executed, is not zero, then ρ is added to the list
LREL, and the new variable appearing in the thesis polynomial (and, con-
sequently, in ρ) but not in the list V AR, is added to V AR. (The process is
iterated until the pseudo-remainder vanishes, and the previously calculated
ρ polynomials complete the hypotheses).

It can also be used to determine geometric loci [32]. (In this case, the ρ poly-
nomials obtained prior to the first zero pseudo-remainde determine the locus).

4 Implementation

We have implemented all these processes in Maple, in a package that we have
called paramGeo3D (PARAMetric GEOmetry 3D). It includes several types of
commands:

i) commands that define geometric objects, like:
• point given by its coordinates
• line or segment determined by two different points
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• plane determined by three non-collinear points
• midpoint of two previously defined points or segment
• rateOnLine, that applied to the pair of distinct points (A, B) and a real

number r, returns the point P in line AB, such that −−→
PB = r · −→

PA
• translate, that applied to the three points (A, B, C), returns the point

P , such that −−→
CP = −−→

AB
• parallel plane/line to other previously defined plane/line through a

point
• perpendicular line/plane to a previously defined plane/line (respec-

tively) through a point
• dist2 that applied to a point and a point/line/plane, returns the square

of the distance between them
• sphere determined by its center and a point (or radius) or passing

through four points
• quadric determined by nine points
• intersection of two previously defined objects whose equations have

degree 1 or 2 (in case the degree is greater than 2, the intersection can
be calculated using the command PID of Epsilon [11]).

ii) commands that allow to declare memberships:
• pointOnObject, that defines hypothesis conditions (when executed, the

hypothesis polynomials are automatically added to the list LREL and
the new variables are added to the list VAR)

• in case a pointOnObject relation has been already defined for the point,
this command is substituted by pointOnAnotherObject, that adds the
hypothesis polynomials to the list LREL but does not add the variables
to the list VAR.

iii) command isPlaced, that, applied to the pair (P, τ) mentioned above, gen-
erates the thesis polynomial τ(P ).

iv) command autProve, that, applied to the 3-tuple (P, τ, method name), where
the third argument is the abbreviated name of the chosen method (i.e., EGB,
UGB, RSP), returns SUCCESS/FAILURE, depending on whether P ∈ τ has
been proved or not.

v) command newHypot, that, applied to the pair (P, τ), returns a new hypoth-
esis condition for the thesis condition to hold, if necessary; in other case, the
message No other hypothesis polynomial is necessary is returned, and the list
of algebraic nondegeneracy conditions (i.e., the polynomials that must not
vanish to allow to assure that the thesis condition, P ∈ τ , is true) is stored
in the global variable DEG.

5 Gallery of Examples

Examples of some of the methods described above are included as illustration
afterwards.
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5.1 A Simple Example Showing How the Package Works

Example 1. Check if the midpoint of each diagonal of a parallelepiped lies on
the other diagonals (see Figure 1).

Fig. 1. Concurrency of the diagonals of a parallelepiped

A vertex, A, and its three adjacent ones, B,D,E, can be considered as the
initial points of the configuration and the other four vertices are determined
from the parallelism of opposite faces. For the sake of simplicity, we can consider
A as the coordinate origin, B lying on one coordinate axis and D lying on one
coordinate plane:

A:=point(1,0,0,0):
B:=point(1,b,0,0):
D:=point(1,d1,d2,0):
E:=point(1,e1,e2,e3):

The three plane-faces ABD, ABE, ADE are defined from these vertices. For
instance, the first one is defined as follows:

ABD:=plane(A,B,D):

and the other three plane-faces are defined using parallelism relations:

CDG:=parallel(ABE,D):
BCF:=parallel(ADE,B):
EFG:=parallel(ABD,E):

We now determine some of the line-edges intersecting faces:

BC:=intersection(ABD,BCF):
EH:=intersection(ADE,EFG):
FG:=intersection(BCF,EFG):

and the rest of the vertices:

C:=intersection(BC,CDG):
G:=intersection(FG,CDG):
H:=intersection(EH,CDG):
F:=intersection(FG,ABE):
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We now determine the diagonals (as lines):

AG:=line(A,G):
BH:=line(B,H):
CE:=line(C,E):
DF:=line(D,F):

and the midpoints of the corresponding segments:

midAG:=midpoint(A,G):
midBH:=midpoint(B,H):
midCE:=midpoint(C,E):
midDF:=midpoint(D,F):

We finally check that the midpoint of each diagonal (for instance, of AG) lies on
the other three diagonals:

autProve(midAG,BH,RSP);
SUCCESS

autProve(midAG,CE,RSP);
SUCCESS

autProve(midAG,DF,RSP);
SUCCESS

Meanwhile, the degeneracy conditions are the equations of the form: polyno-
mial in the global variable DEG equal to zero. In this case:

DEG;
[b · e3, −b · d2, −d2 · e3]

that are all nonzero if the parallelepiped is non-degenerated.

Note 1. The vertices C, F, G, H could be obtained more briefly using command
translate.

5.2 An Example Showing How Hypothesis Conditions Are
Introduced

Conjecture 1. Let ABCD be a tetrahedron such that D is in the perpendicular
plane to line AB through C and such that D is in the perpendicular plane to
line BC through A too. Then D is also in the perpendicular plane to line CA
through B.

The vertices, A,B,C, of the face ABC of the tetrahedron will be considered
as the initial points of the configuration. As the problem is an affine one, we
can work with an affine representation, supposing x0 = 1 and the coordinates of
these three points will be introduced as lists of three elements. Then our program
begins by adding a 1 as the first element (x0) of the list of coordinates of each
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one of the three points, in order to perform the computations in homogeneous
coordinates in the affine representation:

A:=point(0,0,0):
B:=point(1,0,0):
C:=point(c1,c2,0):

The three line-sides AB, BC, CA, are defined from these vertices:

AB:=line(A,B):
BC:=line(B,C):
CA:=line(C,A):

and, denoting XY Z the plane perpendicular to line XY through point Z, the
planes perpendicular to each one of these line-sides through the third vertex of
face ABC are defined as follows:

AB_C:=perpendicular(AB,C):
BC_A:=perpendicular(BC,A):
CA_B:=perpendicular(CA,B):

Now D = (1, d1, d2, d3) is declared as a point on the object AB C as follows:

D:=pointOnObject(1,d1,d2,d3,AB_C):

and then the polynomial condition D ∈ AB C is automatically stored in the
list LREL and the variables (coordinates) d1, d2, d3 are automatically stored in
the list V AR. Now, the same point D is declared as a point on the other object
BC A as follows:

pointOnAnotherObject(D,BC_A):

and then the polynomial condition D ∈ BC A is automatically stored in the
list LREL (but the variables variables d1, d2, d3 are not stored again in the list
V AR, because D is not a new point).

We finally check that the point D lies on the third perpendicular plane CA B,
using any one of the three methods:

autProve(D,CA B,EGB);
SUCCESS

autProve(D,CA B,UGB);
SUCCESS

autProve(D,CA B,RSP);
SUCCESS

When this third method is applied, the degeneracy conditions are stored in
the global variable DEG. In this case:

DEG;
[c22]

that is nonzero if the triangle-face ABC is non-degenerated.
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Fig. 2. Orthogonal property of opposite line-sides of a tetrahedron

Thus, we have mechanically proved Conjecture 1. The following corollary fol-
lows immediately from this result (because each line included in a perpendicular
plane to a given line is also orthogonal to this given line):

Corollary 1. If two line-sides of a tetrahedron are orthogonal to their opposite
ones, then the other two opposite line-sides of the tetrahedron are also orthogonal
(see Figure 2).

(This corollary was mentioned by the anonymous referee).

5.3 Rediscovering Ceva and Menelaus 3D-Theorems Through an
Hypothesis Conditions Completion Process

Conjecture 2. Let ABCD be a tetrahedron and let M ∈ AB, N ∈ BC, P ∈ CD
and Q ∈ DA. A condition involving numbers MB

MA , NC
NB , PD

PC and QA
QD , equivalent

to the coplanarship of M, N, P and Q, exists (see Figure 3).

Let us rediscover these 3D theorems (that extend to 3D the classic Ceva and
Menelaus 2D theorems) through an hypothesis conditions completion process.
The process of the proof presented here is shorter than that of [35]. H. Davis
recently proved these theorems using synthetic techniques [46].

The initial points A, B, C, D can be defined using command point. Then, the
hypothesis conditions can be defined using command rateOnLine, considering
numbers m, n, p, q, such that −−→

MB = m · −−→MA,
−−→
NC = n · −−→NB,

−−→
PD = p · −−→PC and−→

QA = q · −−→QD. Plane MNP can be defined using command plane.
Now, applying command newHypot to the pair (Q, MNP ), we automatically

obtain
−1 + m · n · p · q = 0

as a necessary condition for Q ∈ MNP .
To verify that it is a sufficient condition, Q is particularized for q = 1

m·n·p ,
and applying command isPlaced to the pair (Q, MNP ), zero is obtained, what
confirms that Q belongs to plane MNP .
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Fig. 3. Extending to 3D Ceva and Menelaus theorems

Thus, we have mechanically discovered the following:

Theorem 1. Points M, N, P, Q, lying on the oriented consecutive edge-lines
AB, BC, CD, DA of tetrahedron ABCD (respectively), are coplanary, if and
only if

MB

MA
· NC

NB
· PD

PC
· QA

QD
= 1

(Let us observe that, as points M, N, P, Q can lie outside the edge-segments, as
happens in Figure 3, this result does not only extend Ceva theorem to 3D, but
also Menelaus theorem).

5.4 Automatic Proof of Desargues Homological Tetrahedrons
Theorem

We suspect that a coplanary condition involving the intersection points of cor-
responding edge-lines of two homological tetrahedrons (like in Desargues homo-
logical triangles theorem), exists. That is, we believe that Conjecture 3 holds.

Conjecture 3. Let ABCD and A′B′C′D′ be two tetrahedrons, such that the four
lines AA′, BB′, CC′, DD′ all meet at a point, O, that is not in any of the face-
planes of ABCD (Figure 4). Then, each one of the six pairs of corresponding
edge-lines are intersecting lines and these points of concurrence are coplanary.

This result, that was already proved in [33] using Grassmann algebras, can be
automatically proved as follows (the proof is simpler than that of [36]).

The initial points A, B, C, D can be defined using command point. Then,
the six edge-lines AB, AC, AD, BC, BD, CD and the perspective-lines OA, OB,
OC, OD can be defined using the line command.

The hypothesis conditions consisting of the vertices A′, B′, C′, D′ lying on OA,
OB, OC, OD, respectively, can be declared using the pointOnObject command.
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Fig. 4. Configuration of homological tetrahedrons

The face-planes A′B′C′, A′B′D′, A′C′D′, B′C′D′ of A′B′C′D′ can be defined
using the plane command. Then, the six edge-lines of A′B′C′D′ can be defined
using the intersection command. Then the intersection of the corresponding
edge-lines of both tetrahedrons can be determined applying again command
intersection. This way six intersecting points are determined:

Pab = AB ∩ A′B′ , Pac = AC ∩ A′C′ , Pad = AD ∩ A′D′

Pbc = BC ∩ B′C′ , Pbd = BD ∩ B′D′ , Pcd = CD ∩ C′D′.

The points Pab, Pac, Pad are not collinear and the plane determined by them
passes through the other three points of concurrence Pbc, Pbd, Pcd, as can be
checked using command autProve.

This six intersecting points always verify the incidence conditions shown in
Figure 5, as can be checked using command autProve again.

Thus, we have mechanically proven Theorem 2.

Theorem 2. Let ABCD and A′B′C′D′ be two tetrahedrons, such that the four
lines AA′, BB′, CC′, DD′ all meet at a point, O, that is not in any of the face-
planes of ABCD (Figure 4). Then, each one of the six pairs of corresponding
edge-lines are intersecting lines and these points of concurrence are coplanary
and vertices of a complete quadrilateral (Figure 5).

Note 2. This Desargues 3D theorem is also “self-dual”, as the 2D one. That is,
interchanging “points” and “lines” gives an essentially equivalent theorem. Let
us transcribe it into a version that can be solved using the method above.
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Fig. 5. Configuration of the points of concurrence

Theorem 3. Let ABCD and A′B′C′D′ be two tetrahedrons such that the pairs
of corresponding edge-lines AB and A′B′, AC and A′C′... are intersecting lines
and such that their six points of concurrence are vertices of a complete quadri-
lateral. Then the two tetrahedrons are in perspective position.

To prove it we begin by fixing a complete quadrilateral and two tetrahedrons
with coplanary corresponding edge-lines, whose points of concurrence are the
vertices of that complete quadrilateral. We omite this automatic proof for the
sake of brevity.

5.5 About the 3D-Extension of Pappus Theorem

We now analyze an extension to 3D of Pappus theorem (“the three intersection
points of opposite sides of an hexagon, whose vertices lie alternative on two lines,
are collinear”), that is presented here for the first time. Conjecture 4 expresses
the natural extension of Pappus theorem to 3D.

Conjecture 4. Given a closed polygonal line with 8 sides, whose vertices lie al-
ternative on two planes and whose opposite sides are secant, then those four
points of intersection of opposite sides are coplanary.

Let us denote the planes by α and β, and let us denote by A1, B1, A2, B2, A3, B3,
A4, B4 the consecutive vertices of the polygonal line in a way such that A1, A2, A3,
A4 ∈ α and B1, B2, B3, B4 ∈ β (see Figure 6). Let us denote L1 = A1B1, L2 =
B1A2, L3 = A2B2,...,L8 = B4A1 the line-sides of the polygonal line and let us
suppose that opposite sides are secant, denoting: P1 = L1 ∩ L5, P2 = L2 ∩ L6,
P3 = L3 ∩ L7, P4 = L4 ∩ L8. Our goal is to check if P1, P2, P3, P4 are coplanary.

Let us describe a construction that allows to assure that opposite line-sides
are secant.

The four first sides of the polygonal line can be chosen arbitrarily. Conse-
quently, the first five vertices, A1,B1,A2,B2,A3, can be chosen as the initial
points and can be defined using command point. Then, plane α, passing through



A Maple Package for Automatic Theorem Proving and Discovery 183

Fig. 6. Configuration of Pappus 3D theorem

A1,A2,A3 (that are supposed to be non-collinear), can be defined using command
plane. Now a new auxiliary point, B0, can be freely chosen in order to determine
plane β, passing through B1, B2, B0. Command line allows now to define the
four first sides L1 = A1B1, L2 = B1A2, L3 = A2B2, L4 = B2A3.

To generate point B3 we choose P1 ∈ L1 (for instance using rateOnLine)
and we define L5 as line P1A3 and B3 = L5 ∩ β. Point A4 can be generated
similarly, choosing P2 ∈ L2, defining L6 = P2B3 and A4 = L6 ∩ α. Point B4

can be generated the same way, choosing P3 ∈ L3, defining L7 = P3A4 and
B4 = L7 ∩ β. The last line of the polygonal is then L8 = B4A1.

Applying command intersection to lines L8, L4 we can confirm that they are
secant, and we can obtain its common point, P4.

Finally, autProof fails to prove that (in general) P4 lies on plane P1P2P3. The
reason is that the result is not true. It is easy to manually find counterexamples.

Summarizing, the conjecture is false. Nevertheless, a related result has been
proven:

Theorem 4. Given a closed polygonal line with 8 sides, whose vertices lie al-
ternative on two planes and such that their first three line-sides are secant with
their respective opposites, then the fourth side is secant with its opposite.
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Note 3. As L3 and L7 are secant, point B4 is in plane A2B2A4 and therefore
B4 must be in the intersection line r = A2B2A4 ∩ β. It can be proved that
there exists a point B ∈ r, such that selecting B4 = B, then P1, P2, P3, P4 are
coplanary points.

5.6 About the 3D-Extension of Simson-Steiner-Guzmán Theorem

In order to illustrate the use of command newHypot to determine geometric loci,
we shall extend to 3D the following result, discovered by Miguel de Guzmán [47]:

Given a triangle ABC and three arbitrary projection directions, α, β, γ
(not parallel to lines BC, CA, AB, respectively), take an arbitrary point
X in the plane of ABC and project it on the lines BC, CA, AB, along
directions α, β, γ, obtaining points M, N, P , respectively. Then the locus
of all points X such that the area of the triangle MNP is kept unchanged
is a conic.

This result generalizes the well known Simson-Wallace-Steiner theorem. In the
latter, the projections are orthogonal to the sides of the triangle ABC (instead
of projecting in arbitrary directions) and the locus of point X is a circumference
whose center is the circumcenter of the triangle ABC.

Both theorems have been extended to 3D by the authors, substituting trian-
gles by tetrahedrons and substituting area by volume [32,34]. They have also
been proved by F. Botana using other method [31].

The results obtained are not exactly the one would expect (that turns out to
be false), because the 2D conic or circumference have to be substituted in 3D by
a cubic surface instead than by a spherical or quadric surface. These theorems
can be proved more easily, using the package described here, as follows.

The vertices O, A, B, C and the locus point X can be defined using command
point. Then, the four face-planes OAB, OBC, OCA, ABC can be defined using
the plane command.

The hypothesis conditions consisting of the points M , N , P , Q lying on
OAB, OBC, OCA, ABC, respectively, can be declared using the pointOnObject
command.

To define the projection directions, four points D1, D2, D3, D4 (distinct from
O) can be defined using command point and then the direction lines OD1, OD2,
OD3, OD4 can be defined using command line.

Now, the lines XM, XN, XP, XQ parallel to OD1, OD2, OD3, OD4 through
point X can be defined using command parallel.

The hypothesis conditions consisting of the points M , N , P , Q lying on
XM, XN, XP, XQ, respectively, can be declared using the pointOnAnotherOb
ject command.

The volume of the tetrahedron MNPQ can be defined as 1/6 times the de-
terminant of the matrix whose rows are the list of projective coordinates of its
vertices. Then, the thesis condition is: this volume minus the constant v is equal
to zero.
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Now, applying command newHypot to the thesis condition, we automatically
obtain a polynomial expression, h, of degree 3 in the coordinates of X (vari-
ables), and whose coefficients are polynomial expressions in the coordinates of
the vertices O, A, B, C. Then, the new hypothesis polynomial h is automatically
added to the list LREL and one of the coordinates of X is automatically added
to the list VAR, as new variable.

Now, applying again command newHypot to the thesis condition, the message
No other hypothesis polynomial is necessary is returned.

Fig. 7. Locus of point X for v = 0

Thus, we have mechanically discovered the following theorem (whose addi-
tional assertions can be easily verified):

Theorem 5. The locus of point X, such that vol(MNPQ) = v (v constant)
is the cubic surface of equation h = 0. The vertices of the tetrahedron OABC
are singular points of this cubic surface. In particular, for v = 0 (M, N, P, Q
coplanary points), the border-lines of the tetrahedron OABC are contained in
the cubic surface of the locus (Figure 7).

6 Conclusions

The package described is convenient for performing investigations and auto-
matic theorem proving and discovery in 3D-geometry. The way the commands
are defined allows to automatically determine the equations of geometric ob-
jects, hypothesis polynomials, thesis conditions... through an original method of
declaring points on objects. The automatic proving algebraic methods have been
adapted to the way the hypothesis conditions are declared.

Although projective coordinates are used in order to treat projective problems,
it is possible to face affine and Euclidean problems too.
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The possibilities of the package are illustrated with a collection of 3D theo-
rems, most of them original to the authors. The Maple package, named param-
Geo3D, is freely available from the authors.

A future extension is the connection with one of the “new” 3D-DGS so that
the configuration can be introduced using the computer’s mouse, as done in the
2D paramGeo. We shall use the new version of Calques3D, that, following our
request is able to export a readable description of the construction in both Maple
format. (As far as we know, unlike Cabri Gèométre II Plus, Cabri 3D does not
offer the possibility of returning the text description of the construction).
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Abstract. Real Euclidean geometry is a basic mathematical dialect, not
only of high school students, but also of mechanical engineers, graphics
programmers, architects, surveyors, machinists, and many more. In this
paper, we present ”Geometry Expressions”: an interactive symbolic ge-
ometry package. The aim of the software is to generate algebraic formulas
from geometry. It is a further intention of the software that the model
should be entered interactively in a style which is convenient to both the
geometry consumer groups identified above.

1 Introduction

Interactive Geometry Systems and Computer Algebra Systems both have an es-
tablished place in education, the former more heavily at the high school level, the
latter at the college level. The importance of an interactive symbolic geometry
package is that it constitutes a bridge between these two areas of technology: ge-
ometry can be entered graphically, symbolic expressions output which may then
be transferred to an algebra system for further analysis. It is natural for both
consumer groups to merge geometric descriptions with algebraic: the tree that
casts a shadow has a height h, and the shadow a length s, a family of mechanical
parts is parameterized by exterior and interior diameters D, and d. The author
is not aware of any existing software which enables the convenient coexistence
of the symbolic with the geometric.

Previous work linking interactive geometry and algebra systems include The
Algebraic Geometer, Geometry Expert, paramGeo and Geother and GDI [1-
4]. The flavor of these systems is to use a link to an algebra system to prove
geometry theorems posed in a dynamical geometry context. Our focus, in con-
trast, is not on theorem proving per se, but on formula generation. A traditional
dynamic geometry system is not the best format for the user interface of a for-
mula generation package, as it does not provide particularly convenient ways to
attach symbolic inputs to a model. Quantities are typically derived from loca-
tions instead of the other way round. (Distances can, nevertheless, be specified
as parameters of translations, angles as parameters of rotations). A constraint
based model, however, allows such quantities as distances and angles to be spec-
ified directly. This is a much more natural style of user interface for a formula
generation package.

F. Botana and T. Recio (Eds.): ADG 2006, LNAI 4869, pp. 189–202, 2007.
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B

CA

⇒ -X4-2·X2·Y2-Y4+2·X2·a2-2·Y2·a2-a4+k2=0

k

t

(a,0)

t

(-a,0)

 
Fig. 1. Oval of Cassini defined in terms of a pair of distance constraints

For example, Cassini Ovals are defined as the loci of points the product of
whose distance from two fixed points is constant. This is naturally expressed as
a pair of symbolic distance constraints from points whose location on a coordi-
nate plane have also been symbolically constrained (Fig. 1). Given these inputs,
Geometry Expressions can output the implicit equation of the resulting locus
as an expression whose coefficients depend on the undetermined symbols k, the
product of the lengths, and a, the absolute value of the x coordinates of the foci.

In this paper, we describe the overall architecture of Geometry Expressions,
detail some aspects of the system design, and illustrate through examples the
usage of the software.

2 System Architecture

The geometry engine in Geometry Expressions works in the following way [5]

1. A sketch of the geometry along with a set of symbolic constraints is entered
by the user.

2. Graph algorithms [6] are used to convert the constraint based description
into a sequence of elementary constructions.

3. The construction sequence is executed symbolically resulting in algebraic
expressions for the location of each of the geometric objects in the drawing.

4. Measurements made from the drawing are converted into algebraic expres-
sions involving the locations of the geometry objects. The expressions thus
obtained are simplified using standard techniques of computer algebra, along
with some geometry specific heuristics, and presented to the user.

For example, the drawing of a triangle constrained by two sides and the included
angle in (Fig. 2) is converted into this construction sequence:

1. Create a point A at arbitrary location.
2. Create a line AB through A with arbitrary direction.
3. Create a point B on line AB distance a from point A.
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A

B

C
θ

a

b

Fig. 2. A geometric figure is specified by a sketch with symbolic constraints (algorithm
step 1)

A

B

C

⇒ u0+b·cos −θ+θ0 ,v0+b·sin −θ+θ0

⇒ u0,v0

⇒ u0+a·cos θ0 ,v0+a·sin θ0

θ

a

b

Fig. 3. Geometry Expressions computes symbolic locations for points in a constrained
triangle (algorithm step 3)

4. Create a line AC through A and with direction angle θ from line AB.
5. Create a point C on line AC distance b from point A.

Given this construction sequence, Geometry Expressions creates locations for
all the points (Fig. 3). Where there is any freedom in the model, Geometry
Expressions adds system-generated variables. For example, in fig. 3, the location
of A is arbitrary, and the system adds variables u0 and v0 as its coordinates. It
also adds the variable θ0 for the arbitrary direction AB.
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A

B

C

⇒ u0+b·cos −θ+θ0 ,v0+b·sin −θ+θ0

⇒ u0,v0

⇒ a2+b2−2·a·b·cos( θ)

⇒ u0+a·cos θ0 ,v0+a·sin θ0

θ

a

b

Fig. 4. Output measurements are computed and simplified (algorithm step 4)

When the user asks for a measurement from the drawing, the equivalent alge-
braic expression is evaluated, simplified and presented. For example, if he asks
for the distance between B and C, the distance formula is applied to the sym-
bolic expressions for the coordinates of A and B, simplified and displayed on the
diagram (fig. 4).

Within this overall architectural framework, there are a number of design
features which are essential to the practicality of the system. We will discuss the
following features:

– Intermediate variable retention
– Use of real witness values for variables
– Use of MathML to facilitate two way communication with algebra systems.

2.1 Intermediate Variable Retention

In a purely numerical system, the space and time requirements of the above
algorithm are linear in the number of primitive geometric entities. In a symbolic
implementation, however, the size of algebraic expressions grows exponentially in
the length of the construction sequence. The linear characteristics of the numer-
ical algorithm can be recaptured in the symbolic domain by creating geometric
intermediate variables and retaining them in the symbolic representation of the
model, and initially in the output measurements.

The user is able to control the display of intermediate variables, by specifying
whether they should be retained, and by setting a global granularity param-
eter. The system substitutes away intermediate variables whose definition is
deemed too simple (for example, an intermediate variable which is defined to
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A

B

C

D

⇒

u2
2+v2

2

u1=b·cos(θ)

v1=−b·sin(θ)

d1= v1
2+ −a+u1

2

d3= c+d+d1· c+d−d1· c−d+d1· −c+d+d1

d2=−c2+d2+d1
2

u2=u1−
d3·v1

2·d1
2 +

d2· a−u1

2·d1
2

v2=v1−
d2·v1

2·d1
2 −

d3· a−u1

2·d1
2

a

b

θ

d

c

Fig. 5. Distance AD with fine grained intermediate variables. The intermediate vari-
ables u1, v1, u2, v2, d1, d2, d3, are local to the expression and defined, ultimately, in
terms of the input variables a,b,c,d, θ.

be a constant would always be considered too simple to retain). The granular-
ity parameter controls the definition of ”too simple”. Figures 5 and 6 show the
same measurement with different settings for the granularity parameter. In Fig.
5, the parameter is set ”fine” with the result that more intermediate variables
are retained, but their definitions are simple. In Fig. 6, the granularity parame-
ter is set coarser with the result that fewer, but more complicated, intermediate
variables are present.

2.2 Witness Values for Variables

The definition of a problem in Geometry Expressions has two components. Al-
gebraically a problem comprises a set of constraints between entities. These
constraints correspond to symbolic expressions. In addition, the problem defini-
tion contains a sketch of the intended geometry. In general there may be more
than one solution to the set of equations corresponding to the constraints. The
sketch of the intended geometry is used to choose which solution to use.

In Fig. 7, for example, both triangles ABC and ADC are defined by the
same set of constraints (two sides and the non-included angle) however, because
ABC is sketched as an acute angle, and ADC is sketched as an obtuse angle,
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A

B

C

D

⇒

−d3·(a−b·cos(θ))

2·d1
2 −b·sin(θ)+

b· −c2+d2+d1
2 ·sin(θ)

2·d1
2

2

+
(a−b·cos(θ ))· −c2+d2+d1

2

2·d1
2 +

b·d3·sin(θ)

2·d1
2 +b·cos(θ)

2

d1= a2+b2−2·a·b·cos( θ)

d3= c+d+d1· c+d−d1· c−d+d1· −c+d+d1

a

b

θ

d

c

Fig. 6. The same measurement as Fig. 5, but with a coarser setting to the intermediate
variable granularity parameter

Geometry Expressions has resolved B and D to different locations - and the
symbolic outputs for the lengths BC and DC are indeed different. To reiterate, in
terms of symbolic constraints (i.e. algebra) triangles ABC and ADC are defined
identically. It is the drawing (i.e. geometry) which leads the symbolic values of
BC and DC to differ.

Each solution to the symbolic constraint set represents a family of numerical
solutions. Geometry Expressions displays a representative member of the family.
In order to do this, it needs to substitute a real number for each of the input
variables. For example, in Fig. 7 AB and AD are both specified to have length
a. In order to draw a representative solution, the system needs a numeric value
for a. In theory, a could have any of a wide range of values, however in practice,
the user expects that the representative member of the solution family chosen
by the system should be fairly close to his original sketch.

We call the specific numeric value used in the sketch the witness value for
the variable. Geometry Expressions has a subsystem for deriving witness values
from the sketch, and maintaining witness values throughout its algebra system.
Constraints may be specified as expressions involving input variables (Fig. 1,
for example). To derive plausible witness values for these inputs, Geometry Ex-
pression uses a general purpose numeric root finder. In addition there is a user
interface subsystem which allows the user to explicitly set witness values, and
to control their behavior on dragging.

A further use of witness values for variables is to allow the automatic creation
of assumptions in order to simplify output expressions involving absolute values.
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D

C

A

B

⇒ a2−b2·sin(θ)2+b·cos(θ)

⇒ − a2−b2·sin(θ)2+b·cos(θ)

b

a

a

θ

Fig. 7. Triangle ABC is specified in terms of two sides and the non included angle.
There are of course two possible such triangles (ADC is the other one). The solution
branch which contains the witness triangle is selected by the application.

A

B

CD

E

F
⇒

−a2+b2+t2+ a2−b2+t2

4·c

(0,0)

c

b

a

a

b

t

aa

0

c

Fig. 8. Paucellier’s linkage with the height of D displayed without invoking assumptions
based on witness values
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A

B

CD

E

F
⇒

−a2+b2

2·c

 | b2>a2

 | a2+t2<b2

(0,0)

c

b

a

a

b

t

aa

0

c

Fig. 9. The height of D simplified with explicit assumptions automatically supplied
based on witness values for a,b, and t

Geometry Expressions has both an implicit and an explicit assumptions mech-
anism. Implicit assumptions are derived from the knowledge that any variables
which are used to specify distances or radii must be positive. If the argument
of an absolute value can be deduced to be strictly positive or strictly negative
based on this information, then the absolute value can be simplified. Such im-
plicit assumptions are applied automatically.

Explicit assumptions may be applied at the user’s request. In this case, a
real numeric value for the argument of an absolute value is determined based on
witness values for any variables which are present. The absolute value is replaced
by its argument or by the negative of its argument depending on the sign of this
numeric value. An explicit assumption is added to the output expression.

Figures 8 and 9 both show models of Paucellier’s linkage. The design of this
linkage is such that varying the distance t between B and F should move D in
a horizontal straight line. In Fig. 8, the fact that the height of D is independent
of t is obscured by the absolute values. In Fig. 9, the addition of assumptions
based on witness values for the variables makes its independence of t clear.

2.3 MathML

Geometry Expressions has a special purpose algebra system built in, which is
responsible for maintaining and simplifying the expressions generated by the
geometric models. However it does not contain a full general purpose CAS.
Instead there is a capability for importing and exporting MathML. This allows
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the user to copy symbolic measurements from Geometry Expressions into the
algebra system of his choice, perform some analysis, then, if appropriate, paste
the results back into Geometry Expressions.

MathML Example. As an illustration of the use of Geometry Expressions in
conjunction with an algebra system, we describe an investigation of the location
of the cusps observed in the caustic formed by light from a finite point source
reflecting in a cylinder.

A

C

B

⇒

X=
2·a2·cos(t)3

1+2·a2+3·a·sin(t)

Y=
a·(2+3·a·sin(t)+a·sin(3·t))

2· 1+2·a2+3·a·sin(t)

(0,−a)

(0,0)

1
t

Fig. 10. Parametric equation of the envelope of the rays emanating from the point D
(0,-a) and reflected in the unit circle centered at the origin. The parameter t corresponds
to the direction AB.

To model this situation in Geometry Expressions (fig 10), we create a circle,
AB and an infinite line through B. We constrain the center of the circle to have
coordinates (0,0), and constrain its radius to be 1, and we constrain the line
through B to be tangential to the circle. We constrain the parametric location of
B on the circle to be t. This has the effect of setting the angle between AB and
the x axis to be t. We then create a point D and constrain its coordinates to be
(0,-a), create a line through D and B, and construct its reflection in the tangent
line. Finally we create the envelope of the reflected line as t varies between 0
and 2π.

Two cusps of the envelope curve clearly lie on the y axis and are obtained
when B is at parametric locations π

2 and −π
2 . Creating points on the envelope

curve at these parametric locations, we can observe that they do indeed lie at
the cusps. Geometry Expressions computes their coordinates.

The parametric location of the other cusps is not so obvious. To compute
these, we use the facility of copying and pasting to and from an algebra system
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F

A

E

C

B

⇒ 0,
a

1+2·a

⇒ 0,
−a

−1+2·a 3·π
2

π
2

(0,−a)

t

Fig. 11. Coordinates for the points at parametric locations π
2 and −π

2 on the envelope
curve

(in this case Maple) via MathML. Copying the curve equation into Maple, we
differentiate and then solve for the derivatives being simultaneously 0.

x :=
2 cos(t)3a2

1 + 2a2 + 3 sin(t)a
(1)

y :=
1
2

(2 + 3 sin(t)a + sin(3t)a)a
1 + 2a2 + 3 sin(t)a

(2)

> solve({diff(x,t)=0,diff(y,t)=0},t);

{t = −π

2
}, {t =

π

2
}, {t = arctan(−a, RootOf( Z2 − 1 + a2))} (3)

> allvalues(t = arctan(-a,RootOf( Zˆ2-1+aˆ2)));

t = arctan(−a,
√

1 − a2), t = arctan(−a, −
√

1 − a2) (4)

Putting the arctan as the parameter value on a point on the curve, we can
have Geometry Expressions give the coordinates of the point (fig 12)

We notice in this example, the use of the two way communication between
Geometry Expressions and the algebra system. Curve equations generated from
the geometrical problem were exported to the algebra system in order to be
differentiated and solved to find cusp locations. Cusp locations were then copied
back into Geometry Expressions for further geometrical analysis. The two way
communication between these tools makes for a very productive learning and
research environment.
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E

A

C

B ⇒ 2·a2· 1−a2,a−2·a3

(0,−a)

(0,0)

arctan
−a

1−a2

t

Fig. 12. Coordinates of the cusp, whose parametric location on the envelope curve
corresponds to the solution found in Maple

3 Theorem Proving

The interactive nature of the use of Geometry Expressions makes it a useful tool
for the discovery as well as the automatic proof of theorems. We illustrate this
with an example involving mixtilinear incircles and excircles.

A mixtilinear incircle is tangent to 2 sides of a triangle and (internally) to the
circumcircle. A mixtilinear excircle is tangent to 2 sides of a triangle and (exter-
nally) to the circumcircle. We show that the ratio of the radii of the mixtilinear
excircles and the mixtilinear incircles satisfy an analogous relationship to that
between the incircle and excircles.

In Fig. 13, we have constrained a triangle by specifying its side lengths, and
created one mixtilinear incircle/excircle pair. Geometry Expressions computes
the radii of these circles in terms of the side lengths of the triangle. Observing a
degree of commonality between the radii, we display their ratio.

Observing that the ratio displayed has a numerator which is symmetric in
a,b,c we are led to consider the sum of the reciprocals of the 3 such ratios. That
is the sum of the mixtilinear incircle/excircle radii. Simple algebra leads to the
result that if r1, r2, r3 are the radii of the mixtilinear incircles, and if s1, s2, s3
are the radii of the mixtilinear excircles, then:

r0

s0
+

r1

s1
+

r2

s2
= 1 (5)

This is analogous to the relationship between the incircle radius and the excircle
radii [7]:

1
s0

+
1
s1

+
1
s2

=
1
r

(6)
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C

DA

B

G

E

z0 ⇒
−2· b· c· a+b−c· a−b+c· −a+b+c

a+b+c· a2−b2−2·b·c −c2

 | a<b+c

z5 ⇒ 2· b· c· (a+b+c)

3
2 · a+b−c· a−b+c· −a+b+c

a2−b2−2·b·c −c2 2

z5

z0
⇒

a+b+c
−a+b+c

 | a<b+c

a

b

c

Fig. 13. Expression for the coordinates of the center of the incircle in terms of the
coordinates of the triangle vertices

While we make no claims that this result is new in an absolute sense, it was
certainly new to us, and its ”discovery” facilitated by the formula generation ca-
pabilities of Geometry Expressions, working in collaboration with a little human
pattern matching.

B

D

C
A

⇒
x2· x0

2−2·x0·x1+x1
2+y0

2−2·y0·y1+y1
2+x1· x0

2−2·x0·x2+x2
2+y0

2−2·y0·y2+y2
2+x0·

x0
2−2·x0·x1+x1

2+y0
2−2·y0·y1+y1

2+ x0
2−2·x0·x2+x2

2+y0
2−2·y0·y2+y2

2+ x1
2−

x2,y2

x1,y1

x0,y0

Fig. 14. Expression for the coordinates of the center of the incircle in terms of the
coordinates of the triangle vertices
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4 Further Work

One shortcoming of the approach lies in the fact that the user only has an
opportunity to specify symbolic values for an independent set of constraints.
In some situations, the form of the symbolic output could be improved by the
addition of names for dependent quantities.

For example (Fig. 14), the coordinates of the incenter of a triangle expressed in
terms of the vertex coordinates are cumbersome expressions. However, a cursory
inspection shows that the terms under the roots are all the distance formula
for the lengths of the sides. The complexity of the expression could then be
significantly improved if the side lengths are named (Fig. 15).

A topic of further investigation is to extend the basic model so that the user
may specify a dependent set of geometric variables.

D

CA

B

⇒
a· x0+b· x1+c· x2

a+b+c
,

a· y0+b· y1+c· y2

a+b+c

x2, y2

x1, y1

x0, y0

c

b

a

Fig. 15. Expression for the coordinates of the center of the incircle in terms of the
coordinates of the triangle vertices and the side lengths

5 Conclusion

A constraint based interactive symbolic geometry system such as Geometry Ex-
pressions facilitates a collaborative approach to automated geometry. Collabora-
tion between geometry system and algebra system is enabled by MathML based
communication and illustrated by the light caustic example of fig. 10. In that
example, the geometry system was used to generate an equation for the caustic
curve. The algebra system was used to calculate the location of cusps, and those
locations fed back into the geometry system, which was used to display their
locus, and to derive the equation of the locus curve.

Collaboration between user and computer is illustrated in the mixtilinear incir-
cle/excircle example of fig.13. The computer is used to generate equations for cir-
cle radii in terms of triangle side lengths. Examination and manipulation of these
results by a human user leads to the ”discovery” of a theorem relating the radii.
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2. Lozano, E.R., Macáas, E.R., Mena, M.V.: A Bridge Between Dynamic Geometry
and Computer Algebra. Mathematical and Computer Modelling 37(9-10), 1005–1028
(2003)

3. Lozano, E.R.: Boosting the Geometrical Possibilities of Dynamic Geometry Sys-
tems and Computer Algebra Systems Through Cooperation. In: Borovcnik, M.,
Kautschitsch, H. (eds.) Technology in Mathematics Teaching. Proceedings of
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Abstract. Employing a method of distance geometry, we present a sym-
bolic solution to the following problem: express the edge-lengths of a
tetrahedron in terms of its heights and widths.

Keywords: generalized Cayley-Menger algebra, widths of a tetrahedron,
geometric constraint solving.

1 Introduction

A typical geometric constraint problem requires to find a configuration of points,
lines and planes with prescribed pair-wise constraints between these geometric
objects. A pair-wise constraint may be the distance or the angle between them.
For example, in 5P1L problem, one considers a configuration of 5 points and
1 line in 3-space that is constrained as in Fig. 1. All constraints are distances.

Now, let us discuss an nontypical geometric constraint problem. Given are a
set of constraints on four points P1, P2, P3, P4 in E3: the distances from each
point to the plane determined by the other three points, namely,

d(P1, P2P3P4), d(P2, P3P4P1), d(P3, P4P1P2), d(P4, P1P2P3),

and the distances from the line determined by each pair of points to the line
determined by the other two, namely,

d(P1P2, P3P4), d(P1P3, P2P4), d(P1P4, P2P3).

We want to find a realization of the four-point-configuration. In other words,
how to reconstruct a tetrahedron from its heights and widths. Here P1, P2, P3, P4

stand for the vertices of a tetrahedron, and h1, h2, h3, h4 the heights respectively.
By width we mean the distance between a pair of edges with no intersection.
By τij denote the width between PiPj to its opposite, for 1 ≤ i < j ≤ 4.
Clearly that τ12 = τ34, τ13 = τ24, τ14 = τ23. So each tetrahedron has three
� This work is supported in part by NKBRPC-2004CB318003 and NNSFC-10471044.

F. Botana and T. Recio (Eds.): ADG 2006, LNAI 4869, pp. 203–211, 2007.
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Fig. 1. The 5P1L problem: graph vertices represent 5 points and 1 line, while graph
edges distances

widths, namely, τ12, τ13, τ14. The tetrahedron reconstructing means to express
the six edge-lengths dij = PiPj in terms of the heights h1, h2, h3, h4 and widths
τ12, τ13, τ14.

Since any tetrahedron has 6 freedoms up to isometries, it is possible to es-
tablish a formula connecting the seven quantities h1, h2, h3, h4, τ12, τ13, τ14 The
following, which was proved repeatedly in literatures (see [2] and [10] for the
history and proofs), gives a very simple equality.

Lemma 1. The following relation

1
h2

1

+
1
h2

2

+
1
h2

3

+
1
h2

4

=
1

τ2
12

+
1

τ2
13

+
1

τ2
14

holds for any tetrahedron.

So the above problem can also be formulated as: Given any six quantities out
of the four heights and three widths of a tetrahedron, can we express the six
edge-lengths in terms of the given quantities? This problem has been mentioned
by some geometers in different occasions before but still remained unsolved.

In this paper we shall present a solution to this problem by making use of
the so-called metric equations and the Jacobi’s Theorem about the minors of a
matrix. The key is the following formula connecting the dihedral angles, heights
and widths of a tetrahedron.

Theorem 1. Let hi and hj be the heights, τij the width of a tetrahedron. Draw
a triangle ABC with

AB =
1
hi

, AC =
1
hj

, BC =
1
τij

,

then
� A = θij ,

where θij stands for the dihedral angle opposite to the edge PiPj .

In view of this theorem, we may at first construct a tetrahedron similar to that
with given heights and widths, and then compute the similarity constant.



Constructing a Tetrahedron with Prescribed Heights and Widths 205

The paper is organized as follows: §2 gives a brief description to the generalized
Cayley-Menger Algebra and uses it to derive heights and widths in terms of the
edge-lengths (Lemma 2); §3 introduces a formula for dihedral angles (Lemma 3)
and proves Theorem 1; §4 shows a method to determine the six edge-lengths of a
tetrahedron from its dihedral angles. Lemmas 2 and 3 were established in earlier
works of one of the authors of this paper with other collaborators; we shall give
a sketch to their proofs and the prerequisite for convenience to readers.

2 Generalized Cayley-Menger Algebra

A very natural attempt to represent the edge-lengths of a tetrahedron with its
heights and widths is firstly to establish certain formulas for expressing heights
and widths in terms of the edge-lengths, and then solve these equations by taking
the edge-lengths as unknowns. It is very easy to compute the heights from the
edge-lengths since a height equals three times the quotient of the volume V by
the area of a facet, that is,

V =
1
3

· A(P2P3P4) · h1,

where A(P2P3P4) is the area of triangle P2P3P4, and both the volume and area
can be expressed in terms of edge-lengths by using Cayley-Menger determinants,

V 2 =
1

23 · (3!)2
· D(P1, P2, P3, P4),

A(P2P3P4)2 = − 1
22 · (2!)2

· D(P2, P3, P4),

where the Cayley-Menger determinants associated to point sets {P1, P2, P3, P4}
and {P2, P3, P4} are defined by

D(P1, P2, P3, P4) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0 d2
12 d2

13 d2
14 1

d2
12 0 d2

23 d2
24 1

d2
13 d2

23 0 d2
34 1

d2
14 d2

24 d2
34 0 1

1 1 1 1 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

and

D(P2, P3, P4) =

∣
∣
∣
∣
∣
∣
∣
∣

0 d2
23 g2

24 1
d2
23 0 d2

34 1
d2
24 d2

34 0 1
1 1 1 0

∣
∣
∣
∣
∣
∣
∣
∣

;

and the corresponding matrices are called Cayley-Menger matrices associated to
{P1, P2, P3, P4} and {P2, P3, P4}, respectively (see [1,6]).

The formulas for heights can be written in short form as follows. For any
n × n matrix M and integers j, k satisfying 1 ≤ j, k ≤ n, by Mj,k denote the j, k
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minor of M . Let M and D be the Cayley-Menger matrix and Cayley-Menger
determinant associated to the vertices of a tetrahedron P1P2P3P4 respectively,
then the heights of the tetrahedron can be expressed in following way.

h2
1 = − D

2M1,1
, h2

2 = − D

2M2,2
, h2

3 = − D

2M3,3
, h2

4 = − D

2M4,4
.

The Cayley-Menger Algebra was generalized in 1980s-1990s([12,13,14,15,9,11])
to configurations consisting of points, oriented hyperplanes and hyperspheres
(shown as in Fig.2) in En.

��
��

��
��

�
�
��

�
�
��

o o
r r

normal vector normal vector

(O, r) with r > 0 (O, r) with r < 0

Fig. 2. oriented hyperspheres in the plane

In the following we quote the generalized Cayley-Menger Algebra for point-
plane configurations. Given an n-tuple of points and oriented hyperplanes in an
Euclidean space, P = (p1, p2, · · · , pn), we define a mapping g : P × P → R by
letting

– g(pi, pj) be the square of the distance between pi and pj if both are points,
– g(pi, pj) be the signed distance from pi to pj , if one is a point and the other

an oriented hyperplane,

– g(pi, pj) be −1
2

cos(pi, pj), if both are oriented hyperplanes.

By gij denote g(pi, pj) and G denote the matrix (gij)n×n , and let

δ = (δ1, δ2, · · · , δn)

where

δi =
{

1, if Pi is a point,
0, if Pi is a hyperplane

for i = 1, . . . , n. Then, let

M(p1, p2, · · · , pn) =
(

G δT

δ 0

)

which is called the Cayley-Menger matrix of P , and let

D(p1, p2, · · · , pn) =
∣
∣
∣
∣
G δT

δ 0

∣
∣
∣
∣

which is called the Cayley-Menger determinant of P . The following theorem is
an extension to the classical Cayley-Menger determinant.
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Theorem 2. Let D(p1, p2, · · · , pn) be the Cayley-Menger determinant of an n-
tuple of points and oriented hyperplanes in d-dimensional space. If n ≥ d + 2,
then

D(p1, p2, · · · , pn) = 0. (1)

By appropriately selecting the sets of the geometric elements, formula (1) creates
polynomial equations connecting widths and edge-lengths of a tetrahedron. For
instance, construct a plane Π12 that passes through points P3, P4 and parallels to
line P1P2, and consider the configuration formed by the following five elements:

p1 = P1, p2 = P2, p3 = P3, p4 = P4, , p5 = Π12,

as in Figure 3.
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Fig. 3. The plane Π12 passes points P3, P4 and parallels to line P1P2

Following the notations in the last page, for 1 ≤ i, j ≤ 4, we have that

gij := g(pi, pj) = PiP
2
j and

g(p1, p5) = g(p2, p5) = τ12, g(p3, p5) = g(p4, p5) = 0, g(p5, p5) = −1
2
.

Substituting to the metric equation we get
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0 g12 g13 g14 τ12 1
g12 0 g23 g24 τ12 1
g13 g23 0 g34 0 1
g14 g24 g34 0 0 1
τ12 τ12 0 0 −1/2 0
1 1 1 1 0 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0.

This immediately implies the next lemma.
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Lemma 2. Let P1P2P3P4 be a tetrahedron, M and D the Cayley-Menger matrix
and Cayley-Menger determinant associated respectively, then

1
τ2
12

=
2M1,1 + 2M2,2 − 4M1,2

D
,

1
τ2
13

=
2M1,1 + 2M3,3 + 4M1,3

D
,

1
τ2
14

=
2M1,1 + 2M4,4 − 4M1,4

D
.

This result can be found in [10]. Combining this with the height formula it is
very easy to prove Lemma 1 by the following computation:

(M1,1 + M2,2 − 2M1,2) + (M1,1 + M3,3 + 2M1,3) + (M1,1 + M4,4 − 2M1,4)
= −M1,1 − M2,2 − M3,3 − M4,4.

If some six out of the seven quantities, four heights and three widths, are
given as constant numbers, we can get the seventh by Lemma 1 and obtain
the edge-lengths from height and width formulas by solving a set of equations.
But if heights and widths are given in symbols, it is still too complicated to do
elimination. Our strategy for this problem is to find certain geometric invariants
as intermediate variables that way maybe makes the matter easier. Therefore,
the dihedral angles come to mind naturally.

3 Dihedral Angles as Intermediate Variables

In what follows we recall a known result for computing the dihedral angles of a
tetrahedron from its edge-lengths.

Lemma 3 (Law of Cosine of Dihedral). Let P11P2P3P4 be a tetrahedron,
M its Cayley-Menger matrix, and θij the dihedral angle opposite to edge PiPj.
Then

cos(θij) =
−Mi,j

√
Mi,i ·

√
Mj,j

for 1 ≤ i < j ≤ 4.

A proof of this lemma can be found in [14]. It involves the application of The-
orem 2 combining with the Jacobi’s theorem about the minors of matrices (see
[7,4,3,8]).

Theorem 3 (Jacobi’s Theorem). For any n×n matrix M and 1 ≤ j < k ≤ n,
the equality

Mj,j · Mk,k − M2
j,k = Mj,j ;k,k · det(M)

holds, where Mj,j ;k,k stands for the determinant of the submatrix of M by delet-
ing j, k-th rows and j, k-th columns .

We just show the sketch of a proof to the Lemma 3. Consider the geometric
configuration formed by four vertices of a tetrahedron and two facets P2P3P4

and P1P3P4. Let

p1 = P2P3P4, p2 = P1P3P4, p3 = P1, p4 = P2, p5 = P3, p6 = P4.
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and

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1/2 − cos(θ12)/2 h1 0 0 0 0
− cos(θ12)/2 −1/2 0 h2 0 0 0

h1 0 0 g12 g13 g14 1
0 h2 g12 0 g23 g24 1
0 0 g13 g23 0 g34 1
0 0 g14 g24 g34 0 1
0 0 1 1 1 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

the corresponding Cayley-Menger matrix, where θ12 is the dihedral angle oppo-
site to edge P1P2. Then we have

det(M) = 0, M1,1 = 0, M2,2 = 0

according to Theorem 2, hence M1,2 = 0 according to Theorem 3. Expanding
the determinant M1,2, and substituting the height formula for h1, h2 into it, we
get the law of cosine for the tetrahedron as in Lemma 3.

Now we are ready to prove Theorem 1.

Proof to Theorem 1. Let ABC be a triangle formed by

AB =
1
hi

, AC =
1
hj

, BC =
1
τij

.

Then we have

cos(A) =

(
1
h2

i

+
1
h2

j

− 1
τ2
ij

)/ (

2 · 1
hi

· 1
hj

)

.

Substitute the formulas for heights and widths into it, we get

cosA =
−Mi,j√

Mi,i ·
√

Mj,j

,

and therefore, � A = θ12 according to Theorem 3.

4 Determine Edge-Lengths by Dihedral Angles

By means of Theorem 1, we can determine the shape (that is, all the dihedral
angles) of a tetrahedron if given the heights and widths. In what follows we show
a way to compute edge-lengths via the dihedral angles. The following result ([5])
is the key for this task.

Lemma 4. Let P1P2P3P4 be a tetrahedron, Ai the area of the facet opposite to
Pi for i = 1, 2, 3, 4, dij the edge-length of PiPj, θij the dihedral angle opposite to
PiPj, 1 ≤ i < j ≤ 4, and V the volume. Then

V =
2

3dij
AiAj sin(θij).
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Combining this with Lemma 2,

1
τ12

2
=

2M1,1 + 2M2,2 − 4M1,2

D
,

and the height formula

A1 =
3V

h1
, A2 =

3V

h2

we get the following procedure for computing edge-lengths:

g0
ij =

36
h2

i h
2
j

sin2(θij), 1 ≤ i < j ≤ 4,

m =

⎡

⎢
⎢
⎢
⎢
⎣

0 g0
12 g0

13 g0
14 1

g0
12 0 g0

23 g0
24 1

g0
13 g0

23 0 g0
34 1

g0
14 g0

24 g0
34 0 1

1 1 1 1 0

⎤

⎥
⎥
⎥
⎥
⎦

,

V =

√
2m1,1 + 2m2,2 − 4m1,2

det(m)
· τ12,

dij =
6V

hihj
sin(θij), 1 ≤ i < j ≤ 4.

Now, the tetrahedron has been reconstructed as we asked for.
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